hyperledger-fabricdocs Documentation
Release master

hyperledger

Jan 29, 2021

Contents

10

11

12

13

14

15

16

17

18

Introduction

What’s new in Hyperledger Fabric v2.x
Release notes

Key Concepts

Getting Started

Developing Applications
Tutorials

Deploying a production network
Operations Guides

Upgrading to the latest release
Commands Reference
Architecture Reference
Frequently Asked Questions
Contributions Welcome!
Glossary

Releases

Still Have Questions?

Status

15

17

113

129

189

369

409

489

509

579

603

607

633

643

645

647

hyperledger-fabricdocs Documentation, Release master

Note: Please make sure you are looking at the documentation that matches the version of the software you are using.
See the version label at the top of the navigation panel on the left. You can change it using selector at the bottom of
that navigation panel.

~ "'« HYPERLEDGER

%Y FABRIC

Enterprise grade permissioned distributed ledger platform that offers modularity and versatility for a broad set of
industry use cases.

Contents 1

hyperledger-fabricdocs Documentation, Release master

2 Contents

CHAPTER 1

Introduction

In general terms, a blockchain is an immutable transaction ledger, maintained within a distributed network of peer
nodes. These nodes each maintain a copy of the ledger by applying transactions that have been validated by a consensus
protocol, grouped into blocks that include a hash that bind each block to the preceding block.

The first and most widely recognized application of blockchain is the Bitcoin cryptocurrency, though others have
followed in its footsteps. Ethereum, an alternative cryptocurrency, took a different approach, integrating many of the
same characteristics as Bitcoin but adding smart contracts to create a platform for distributed applications. Bitcoin
and Ethereum fall into a class of blockchain that we would classify as public permissionless blockchain technology.
Basically, these are public networks, open to anyone, where participants interact anonymously.

As the popularity of Bitcoin, Ethereum and a few other derivative technologies grew, interest in applying the underlying
technology of the blockchain, distributed ledger and distributed application platform to more innovative enterprise
use cases also grew. However, many enterprise use cases require performance characteristics that the permissionless
blockchain technologies are unable (presently) to deliver. In addition, in many use cases, the identity of the participants
is a hard requirement, such as in the case of financial transactions where Know- Your-Customer (KYC) and Anti-Money
Laundering (AML) regulations must be followed.

For enterprise use, we need to consider the following requirements:
« Participants must be identified/identifiable
* Networks need to be permissioned
* High transaction throughput performance
* Low latency of transaction confirmation
* Privacy and confidentiality of transactions and data pertaining to business transactions

While many early blockchain platforms are currently being adapted for enterprise use, Hyperledger Fabric has been
designed for enterprise use from the outset. The following sections describe how Hyperledger Fabric (Fabric) differ-
entiates itself from other blockchain platforms and describes some of the motivation for its architectural decisions.

https://en.wikipedia.org/wiki/Bitcoin

hyperledger-fabricdocs Documentation, Release master

1.1 Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology (DLT) platform,
designed for use in enterprise contexts, that delivers some key differentiating capabilities over other popular distributed
ledger or blockchain platforms.

One key point of differentiation is that Hyperledger was established under the Linux Foundation, which itself has a
long and very successful history of nurturing open source projects under open governance that grow strong sustaining
communities and thriving ecosystems. Hyperledger is governed by a diverse technical steering committee, and the Hy-
perledger Fabric project by a diverse set of maintainers from multiple organizations. It has a development community
that has grown to over 35 organizations and nearly 200 developers since its earliest commits.

Fabric has a highly modular and configurable architecture, enabling innovation, versatility and optimization for a
broad range of industry use cases including banking, finance, insurance, healthcare, human resources, supply chain
and even digital music delivery.

Fabric is the first distributed ledger platform to support smart contracts authored in general-purpose programming
languages such as Java, Go and Node.js, rather than constrained domain-specific languages (DSL). This means that
most enterprises already have the skill set needed to develop smart contracts, and no additional training to learn a new
language or DSL is needed.

The Fabric platform is also permissioned, meaning that, unlike with a public permissionless network, the participants
are known to each other, rather than anonymous and therefore fully untrusted. This means that while the participants
may not fully trust one another (they may, for example, be competitors in the same industry), a network can be operated
under a governance model that is built off of what trust does exist between participants, such as a legal agreement or
framework for handling disputes.

One of the most important of the platform’s differentiators is its support for pluggable consensus protocols that
enable the platform to be more effectively customized to fit particular use cases and trust models. For instance, when
deployed within a single enterprise, or operated by a trusted authority, fully byzantine fault tolerant consensus might
be considered unnecessary and an excessive drag on performance and throughput. In situations such as that, a crash
fault-tolerant (CFT) consensus protocol might be more than adequate whereas, in a multi-party, decentralized use case,
a more traditional byzantine fault tolerant (BFT) consensus protocol might be required.

Fabric can leverage consensus protocols that do not require a native cryptocurrency to incent costly mining or to
fuel smart contract execution. Avoidance of a cryptocurrency reduces some significant risk/attack vectors, and absence
of cryptographic mining operations means that the platform can be deployed with roughly the same operational cost
as any other distributed system.

The combination of these differentiating design features makes Fabric one of the better performing platforms avail-
able today both in terms of transaction processing and transaction confirmation latency, and it enables privacy and
confidentiality of transactions and the smart contracts (what Fabric calls “chaincode’) that implement them.

Let’s explore these differentiating features in more detail.

1.2 Modularity

Hyperledger Fabric has been specifically architected to have a modular architecture. Whether it is pluggable con-
sensus, pluggable identity management protocols such as LDAP or OpenID Connect, key management protocols or
cryptographic libraries, the platform has been designed at its core to be configured to meet the diversity of enterprise
use case requirements.

At a high level, Fabric is comprised of the following modular components:

* A pluggable ordering service establishes consensus on the order of transactions and then broadcasts blocks to
peers.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

hyperledger-fabricdocs Documentation, Release master

* A pluggable membership service provider is responsible for associating entities in the network with crypto-
graphic identities.

* An optional peer-to-peer gossip service disseminates the blocks output by ordering service to other peers.

e Smart contracts (“‘chaincode”) run within a container environment (e.g. Docker) for isolation. They can be
written in standard programming languages but do not have direct access to the ledger state.

» The ledger can be configured to support a variety of DBMSs.

* A pluggable endorsement and validation policy enforcement that can be independently configured per applica-
tion.

There is fair agreement in the industry that there is no “one blockchain to rule them all”. Hyperledger Fabric can be
configured in multiple ways to satisfy the diverse solution requirements for multiple industry use cases.

1.3 Permissioned vs Permissionless Blockchains

In a permissionless blockchain, virtually anyone can participate, and every participant is anonymous. In such a context,
there can be no trust other than that the state of the blockchain, prior to a certain depth, is immutable. In order
to mitigate this absence of trust, permissionless blockchains typically employ a “mined” native cryptocurrency or
transaction fees to provide economic incentive to offset the extraordinary costs of participating in a form of byzantine
fault tolerant consensus based on “proof of work” (PoW).

Permissioned blockchains, on the other hand, operate a blockchain amongst a set of known, identified and often vetted
participants operating under a governance model that yields a certain degree of trust. A permissioned blockchain
provides a way to secure the interactions among a group of entities that have a common goal but which may not fully
trust each other. By relying on the identities of the participants, a permissioned blockchain can use more traditional
crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols that do not require costly mining.

Additionally, in such a permissioned context, the risk of a participant intentionally introducing malicious code through
a smart contract is diminished. First, the participants are known to one another and all actions, whether submitting
application transactions, modifying the configuration of the network or deploying a smart contract are recorded on the
blockchain following an endorsement policy that was established for the network and relevant transaction type. Rather
than being completely anonymous, the guilty party can be easily identified and the incident handled in accordance
with the terms of the governance model.

1.4 Smart Contracts

A smart contract, or what Fabric calls “chaincode”, functions as a trusted distributed application that gains its secu-
rity/trust from the blockchain and the underlying consensus among the peers. It is the business logic of a blockchain
application.

There are three key points that apply to smart contracts, especially when applied to a platform:
* many smart contracts run concurrently in the network,
* they may be deployed dynamically (in many cases by anyone), and
* application code should be treated as untrusted, potentially even malicious.

Most existing smart-contract capable blockchain platforms follow an order-execute architecture in which the consen-
sus protocol:

* validates and orders transactions then propagates them to all peer nodes,

* each peer then executes the transactions sequentially.

1.3. Permissioned vs Permissionless Blockchains 5

hyperledger-fabricdocs Documentation, Release master

The order-execute architecture can be found in virtually all existing blockchain systems, ranging from pub-
lic/permissionless platforms such as Ethereum (with PoW-based consensus) to permissioned platforms such as Ten-
dermint, Chain, and Quorum.

Smart contracts executing in a blockchain that operates with the order-execute architecture must be deterministic;
otherwise, consensus might never be reached. To address the non-determinism issue, many platforms require that the
smart contracts be written in a non-standard, or domain-specific language (such as Solidity) so that non-deterministic
operations can be eliminated. This hinders wide-spread adoption because it requires developers writing smart contracts
to learn a new language and may lead to programming errors.

Further, since all transactions are executed sequentially by all nodes, performance and scale is limited. The fact that
the smart contract code executes on every node in the system demands that complex measures be taken to protect the
overall system from potentially malicious contracts in order to ensure resiliency of the overall system.

1.5 A New Approach

Fabric introduces a new architecture for transactions that we call execute-order-validate. It addresses the resiliency,
flexibility, scalability, performance and confidentiality challenges faced by the order-execute model by separating the
transaction flow into three steps:

* execute a transaction and check its correctness, thereby endorsing it,
* order transactions via a (pluggable) consensus protocol, and
* validate transactions against an application-specific endorsement policy before committing them to the ledger

This design departs radically from the order-execute paradigm in that Fabric executes transactions before reaching
final agreement on their order.

In Fabric, an application-specific endorsement policy specifies which peer nodes, or how many of them, need to vouch
for the correct execution of a given smart contract. Thus, each transaction need only be executed (endorsed) by the
subset of the peer nodes necessary to satisfy the transaction’s endorsement policy. This allows for parallel execution
increasing overall performance and scale of the system. This first phase also eliminates any non-determinism, as
inconsistent results can be filtered out before ordering.

Because we have eliminated non-determinism, Fabric is the first blockchain technology that enables use of standard
programming languages.

1.6 Privacy and Confidentiality

As we have discussed, in a public, permissionless blockchain network that leverages PoW for its consensus model,
transactions are executed on every node. This means that neither can there be confidentiality of the contracts them-
selves, nor of the transaction data that they process. Every transaction, and the code that implements it, is visible to
every node in the network. In this case, we have traded confidentiality of contract and data for byzantine fault tolerant
consensus delivered by PoW.

This lack of confidentiality can be problematic for many business/enterprise use cases. For example, in a network of
supply-chain partners, some consumers might be given preferred rates as a means of either solidifying a relationship,
or promoting additional sales. If every participant can see every contract and transaction, it becomes impossible to
maintain such business relationships in a completely transparent network — everyone will want the preferred rates!

As a second example, consider the securities industry, where a trader building a position (or disposing of one) would
not want her competitors to know of this, or else they will seek to get in on the game, weakening the trader’s gambit.

In order to address the lack of privacy and confidentiality for purposes of delivering on enterprise use case require-
ments, blockchain platforms have adopted a variety of approaches. All have their trade-offs.

6 Chapter 1. Introduction

https://ethereum.org/
http://tendermint.com/
http://tendermint.com/
http://chain.com/
http://www.jpmorgan.com/global/Quorum
https://solidity.readthedocs.io/en/v0.4.23/

hyperledger-fabricdocs Documentation, Release master

Encrypting data is one approach to providing confidentiality; however, in a permissionless network leveraging PoW
for its consensus, the encrypted data is sitting on every node. Given enough time and computational resource, the
encryption could be broken. For many enterprise use cases, the risk that their information could become compromised
is unacceptable.

Zero knowledge proofs (ZKP) are another area of research being explored to address this problem, the trade-off here
being that, presently, computing a ZKP requires considerable time and computational resources. Hence, the trade-off
in this case is performance for confidentiality.

In a permissioned context that can leverage alternate forms of consensus, one might explore approaches that restrict
the distribution of confidential information exclusively to authorized nodes.

Hyperledger Fabric, being a permissioned platform, enables confidentiality through its channel architecture and private
data feature. In channels, participants on a Fabric network establish a sub-network where every member has visibility
to a particular set of transactions. Thus, only those nodes that participate in a channel have access to the smart contract
(chaincode) and data transacted, preserving the privacy and confidentiality of both. Private data allows collections
between members on a channel, allowing much of the same protection as channels without the maintenance overhead
of creating and maintaining a separate channel.

1.7 Pluggable Consensus

The ordering of transactions is delegated to a modular component for consensus that is logically decoupled from
the peers that execute transactions and maintain the ledger. Specifically, the ordering service. Since consensus is
modular, its implementation can be tailored to the trust assumption of a particular deployment or solution. This
modular architecture allows the platform to rely on well-established toolkits for CFT (crash fault-tolerant) or BFT
(byzantine fault-tolerant) ordering.

Fabric currently offers a CFT ordering service implementation based on the et cd library of the Raft protocol. For
information about currently available ordering services, check out our conceptual documentation about ordering.

Note also that these are not mutually exclusive. A Fabric network can have multiple ordering services supporting
different applications or application requirements.

1.8 Performance and Scalability

Performance of a blockchain platform can be affected by many variables such as transaction size, block size, network
size, as well as limits of the hardware, etc. The Hyperledger Fabric Performance and Scale working group currently
works on a benchmarking framework called Hyperledger Caliper.

Several research papers have been published studying and testing the performance capabilities of Hyperledger Fabric.
The latest scaled Fabric to 20,000 transactions per second.

1.9 Conclusion

Any serious evaluation of blockchain platforms should include Hyperledger Fabric in its short list.

Combined, the differentiating capabilities of Fabric make it a highly scalable system for permissioned blockchains
supporting flexible trust assumptions that enable the platform to support a wide range of industry use cases ranging
from government, to finance, to supply-chain logistics, to healthcare and so much more.

Hyperledger Fabric is the most active of the Hyperledger projects. The community building around the platform is
growing steadily, and the innovation delivered with each successive release far out-paces any of the other enterprise
blockchain platforms.

1.7. Pluggable Consensus 7

./private-data/private-data.html
./private-data/private-data.html
https://coreos.com/etcd/
https://raft.github.io/raft.pdf
./orderer/ordering_service.html
https://wiki.hyperledger.org/display/PSWG/Performance+and+Scale+Working+Group
https://wiki.hyperledger.org/display/caliper
https://arxiv.org/abs/1901.00910

hyperledger-fabricdocs Documentation, Release master

1.10 Acknowledgement

The preceding is derived from the peer reviewed “Hyperledger Fabric: A Distributed Operating System for Per-
missioned Blockchains™ - Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan,
Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolic, Sharon Weed Cocco, Jason Yellick

8 Chapter 1. Introduction

https://dl.acm.org/doi/10.1145/3190508.3190538
https://dl.acm.org/doi/10.1145/3190508.3190538

CHAPTER 2

What's new in Hyperledger Fabric v2.x

2.1 What’s New in Hyperledger Fabric v2.3

Hyperledger Fabric v2.3 introduces two new features for improved orderer and peer operations.

2.1.1 Orderer channel management without a system channel

To simplify the channel creation process and enhance the privacy and scalability of channels, it is now possible to
create application channels without first creating a “system channel” managed by the ordering service. This process
allows ordering nodes to join (or leave) any number of channels as needed, similar to how peers can participate in
multiple channels.

Benefits of the new process:

¢ Increased privacy: Because all ordering nodes used to be joined to the system channel, every ordering node
in a network knew about the existence of every channel on that ordering service. Now, an ordering node only
knows about the channels it is joined to.

* Scalability: When there is a large number of ordering nodes and channels defined on the system channel, it can
take a long time for ordering nodes to reach consensus on the membership of all the channels. Now, an ordering
service can scale horizontally in a decentralized fashion by independently joining ordering nodes to specific
channels.

¢ Operational benefits

Simple process to join an ordering node to a channel.

Ability to list the channels that the ordering node is a consenter on.

Simple process to remove a channel from an ordering node, which automatically cleans up the blocks
associated with that channel.

Peer organizations do not need to coordinate with an admin of the system channel to create or update
its MSP.

For more information, see the Create a channel without a system channel topic.

hyperledger-fabricdocs Documentation, Release master

2.1.2 Ledger snapshot

It is now possible to take a snapshot of a peer’s channel information, including its state database, and join new peers
(in the same organization or different organizations) to the channel based on the snapshot.

Using ledger snapshots has the following advantages:

* Peers don’t need to process all blocks since genesis block: Peers can join a channel without processing all
previous blocks since the genesis block, greatly reducing the time it takes to join a peer to an existing channel.

¢ Peers can join channels using latest channel configuration: Because snapshots include the latest channel
configuration, peers can now join a channel using the latest channel configuration. This is especially important
if critical channel configuration such as orderer endpoints or TLS CA certificates have been updated since the
genesis block.

* Reduced storage costs: Peers that join by snapshot do not incur the storage cost of maintaining all blocks since
the genesis block.

« State checkpoints: Peer administrators can snapshot current channel state and compare with other peers, in the
same organization or different organizations, to verify the consistency and integrity of the ledger on each peer.
Agreed upon snapshots can be used as a checkpoint and basis for newly joining peers.

For more information, see the Taking ledger snapshots and using them to join channels topic.

Note: While Fabric v2.3.0 introduces new features, Fabric v2.2.x remains the current long-term support release until
the next LTS release is announced.

2.2 What’s New in Hyperledger Fabric v2.0, v2.1, v2.2

The first Hyperledger Fabric major release since v1.0, Fabric v2.0 delivers important new features and changes for
users and operators alike, including support for new application and privacy patterns, enhanced governance around
smart contracts, and new options for operating nodes.

v2.1 and v2.2 build on the v2.0 release with minor features, improvements, and bug fixes, with v2.2 being the first
long-term support (LTS) release of Fabric v2.x. Fixes will be provided on the v2.2.x release stream until after the next
LTS release is announced.

Let’s take a look at some of the highlights of the Fabric v2.0 release. ..

2.2.1 Decentralized governance for smart contracts

Fabric v2.0 introduces decentralized governance for smart contracts, with a new process for installing a chaincode on
your peers and starting it on a channel. The new Fabric chaincode lifecycle allows multiple organizations to come
to agreement on the parameters of a chaincode, such as the chaincode endorsement policy, before it can be used to
interact with the ledger. The new model offers several improvements over the previous lifecycle:

* Multiple organizations must agree to the parameters of a chaincode: In the release 1.x versions of Fabric,
one organization had the ability to set parameters of a chaincode (for instance the endorsement policy) for all
other channel members, who only had the power to refuse to install the chaincode and therefore not take part in
transactions invoking it. The new Fabric chaincode lifecycle is more flexible since it supports both centralized
trust models (such as that of the previous lifecycle model) as well as decentralized models requiring a sufficient
number of organizations to agree on an endorsement policy and other details before the chaincode becomes
active on a channel.

10 Chapter 2. What’s new in Hyperledger Fabric v2.x

hyperledger-fabricdocs Documentation, Release master

* More deliberate chaincode upgrade process: In the previous chaincode lifecycle, the upgrade transaction
could be issued by a single organization, creating a risk for a channel member that had not yet installed the new
chaincode. The new model allows for a chaincode to be upgraded only after a sufficient number of organizations
have approved the upgrade.

* Simpler endorsement policy and private data collection updates: Fabric lifecycle allows you to change
an endorsement policy or private data collection configuration without having to repackage or reinstall the
chaincode. Users can also take advantage of a new default endorsement policy that requires endorsement from
a majority of organizations on the channel. This policy is updated automatically when organizations are added
or removed from the channel.

* Inspectable chaincode packages: The Fabric lifecycle packages chaincode in easily readable tar files. This
makes it easier to inspect the chaincode package and coordinate installation across multiple organizations.

¢ Start multiple chaincodes on a channel using one package: The previous lifecycle defined each chaincode
on the channel using a name and version that was specified when the chaincode package was installed. You can
now use a single chaincode package and deploy it multiple times with different names on the same channel or
on different channels. For example, if you’d like to track different types of assets in their own ‘copy’ of the
chaincode.

¢ Chaincode packages do not need to be identical across channel members: Organizations can extend a
chaincode for their own use case, for example to perform different validations in the interest of their organization.
As long as the required number of organizations endorse chaincode transactions with matching results, the
transaction will be validated and committed to the ledger. This also allows organizations to individually roll out
minor fixes on their own schedules without requiring the entire network to proceed in lock-step.

For existing Fabric deployments, you can continue to use the prior chaincode lifecycle with Fabric v2.x. The new
chaincode lifecycle will become effective only when the channel application capability is updated to v2.0. See the
Fabric chaincode lifecycle concept topic for an overview of the new chaincode lifecycle.

2.2.2 New chaincode application patterns for collaboration and consensus

The same decentralized methods of coming to agreement that underpin the new chaincode lifecycle management can
also be used in your own chaincode applications to ensure organizations consent to data transactions before they are
committed to the ledger.

¢ Automated checks: As mentioned above, organizations can add automated checks to chaincode functions to
validate additional information before endorsing a transaction proposal.

* Decentralized agreement: Human decisions can be modeled into a chaincode process that spans multiple
transactions. The chaincode may require actors from various organizations to indicate their terms and conditions
of agreement in a ledger transaction. Then, a final chaincode proposal can verify that the conditions from all the
individual transactors are met, and “settle” the business transaction with finality across all channel members. For
a concrete example of indicating terms and conditions in private, see the asset transfer scenario in the Private
data documentation.

2.2.3 Private data enhancements

Fabric v2.0 also enables new patterns for working with and sharing private data, without the requirement of creating
private data collections for all combinations of channel members that may want to transact. Specifically, instead of
sharing private data within a collection of multiple members, you may want to share private data across collections,
where each collection may include a single organization, or perhaps a single organization along with a regulator or
auditor.

Several enhancements in Fabric v2.x make these new private data patterns possible:

2.2. What’s New in Hyperledger Fabric v2.0, v2.1, v2.2 11

hyperledger-fabricdocs Documentation, Release master

» Sharing and verifying private data: When private data is shared with a channel member who is not a member
of a collection, or shared with another private data collection that contains one or more channel members (by
writing a key to that collection), the receiving parties can utilize the GetPrivateDataHash() chaincode API to
verify that the private data matches the on-chain hashes that were created from private data in previous transac-
tions.

* Collection-level endorsement policies: Private data collections can now optionally be defined with an endorse-
ment policy that overrides the chaincode-level endorsement policy for keys within the collection. This feature
can be used to restrict which organizations can write data to a collection, and is what enables the new chain-
code lifecycle and chaincode application patterns mentioned earlier. For example, you may have a chaincode
endorsement policy that requires a majority of organizations to endorse, but for any given transaction, you may
need two transacting organizations to individually endorse their agreement in their own private data collections.

» Implicit per-organization collections: If you’d like to utilize per-organization private data patterns, you don’t
even need to define the collections when deploying chaincode in Fabric v2.x. Implicit organization-specific
collections can be used without any upfront definition.

To learn more about the new private data patterns, see the Private data (conceptual documentation). For details about
private data collection configuration and implicit collections, see the Private Data (reference documentation).

2.2.4 External chaincode launcher

The external chaincode launcher feature empowers operators to build and launch chaincode with the technology of
their choice. Use of external builders and launchers is not required as the default behavior builds and runs chaincode
in the same manner as prior releases using the Docker API.

* Eliminate Docker daemon dependency: Prior releases of Fabric required peers to have access to a Docker
daemon in order to build and launch chaincode - something that may not be desirable in production environments
due to the privileges required by the peer process.

¢ Alternatives to containers: Chaincode is no longer required to be run in Docker containers, and may be
executed in the operator’s choice of environment (including containers).

* External builder executables: An operator can provide a set of external builder executables to override how
the peer builds and launches chaincode.

* Chaincode as an external service: Traditionally, chaincodes are launched by the peer, and then connect back
to the peer. It is now possible to run chaincode as an external service, for example in a Kubernetes pod, which
a peer can connect to and utilize for chaincode execution. See Chaincode as an external service for more
information.

See External Builders and Launchers to learn more about the external chaincode launcher feature.

2.2.5 State database cache for improved performance on CouchDB

* When using external CouchDB state database, read delays during endorsement and validation phases have his-
torically been a performance bottleneck.

» With Fabric v2.0, a new peer cache replaces many of these expensive lookups with fast local cache reads. The
cache size can be configured by using the core.yaml property cacheSize.

2.2.6 Alpine-based docker images

Starting with v2.0, Hyperledger Fabric Docker images will use Alpine Linux, a security-oriented, lightweight Linux
distribution. This means that Docker images are now much smaller, providing faster download and startup times, as

12 Chapter 2. What’s new in Hyperledger Fabric v2.x

hyperledger-fabricdocs Documentation, Release master

well as taking up less disk space on host systems. Alpine Linux is designed from the ground up with security in mind,
and the minimalist nature of the Alpine distribution greatly reduces the risk of security vulnerabilities.

2.2.7 Sample test network

The fabric-samples repository now includes a new Fabric test network. The test network is built to be a modular and
user friendly sample Fabric network that makes it easy to test your applications and smart contracts. The network also
supports the ability to deploy your network using Certificate Authorities, in addition to cryptogen.

For more information about this network, check out Using the Fabric test network.

2.2.8 Upgrading to Fabric v2.x

A major new release brings some additional upgrade considerations. Rest assured though, that rolling upgrades from
v1.4.x to v2.0 are supported, so that network components can be upgraded one at a time with no downtime. You can
also upgrade directly from the v1.4.x LTS release to the v2.2.x LTS release.

The upgrade docs have been significantly expanded and reworked, and now have a standalone home in the documen-
tation: Upgrading to the latest release. Here you’ll find documentation on Upgrading your components and Updating
the capability level of a channel, as well as a specific look at the considerations for upgrading to v2.x, Considerations
for getting to v2.x.

2.2. What’s New in Hyperledger Fabric v2.0, v2.1, v2.2 13

hyperledger-fabricdocs Documentation, Release master

14 Chapter 2. What’s new in Hyperledger Fabric v2.x

CHAPTER 3

Release notes

The release notes provide more details for users moving to the new release. Specifically, take a look at the changes
and deprecations announced in each of the v2.x releases.

* Fabric v2.0.0 release notes.
e Fabric v2.0.1 release notes.
* Fabric v2.1.0 release notes.
* Fabric v2.1.1 release notes.
e Fabric v2.2.0 release notes.
* Fabric v2.2.1 release notes.

¢ Fabric v2.3.0 release notes.

15

https://github.com/hyperledger/fabric/releases/tag/v2.0.0
https://github.com/hyperledger/fabric/releases/tag/v2.0.1
https://github.com/hyperledger/fabric/releases/tag/v2.1.0
https://github.com/hyperledger/fabric/releases/tag/v2.1.1
https://github.com/hyperledger/fabric/releases/tag/v2.2.0
https://github.com/hyperledger/fabric/releases/tag/v2.2.1
https://github.com/hyperledger/fabric/releases/tag/v2.3.0

hyperledger-fabricdocs Documentation, Release master

16 Chapter 3. Release notes

CHAPTER 4

Key Concepts

4.1 Introduction

Hyperledger Fabric is a platform for distributed ledger solutions underpinned by a modular architecture delivering high
degrees of confidentiality, resiliency, flexibility, and scalability. It is designed to support pluggable implementations
of different components and accommodate the complexity and intricacies that exist across the economic ecosystem.

We recommend first-time users begin by going through the rest of the introduction below in order to gain familiarity
with how blockchains work and with the specific features and components of Hyperledger Fabric.

Once comfortable — or if you’re already familiar with blockchain and Hyperledger Fabric — go to Getting Started
and from there explore the demos, technical specifications, APIs, etc.

4.1.1 What is a Blockchain?

A Distributed Ledger

At the heart of a blockchain network is a distributed ledger that records all the transactions that take place on the
network.

A blockchain ledger is often described as decentralized because it is replicated across many network participants,
each of whom collaborate in its maintenance. We’ll see that decentralization and collaboration are powerful attributes
that mirror the way businesses exchange goods and services in the real world.

17

hyperledger-fabricdocs Documentation, Release master

In addition to being decentralized and collaborative, the information recorded to a blockchain is append-only, using
cryptographic techniques that guarantee that once a transaction has been added to the ledger it cannot be modified.
This property of “immutability” makes it simple to determine the provenance of information because participants can
be sure information has not been changed after the fact. It’s why blockchains are sometimes described as systems of
proof.

Smart Contracts

To support the consistent update of information — and to enable a whole host of ledger functions (transacting, query-
ing, etc) — a blockchain network uses smart contracts to provide controlled access to the ledger.

18 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

written to
the ledger

O

updating
transaction

Smart contract

Smart contracts are not only a key mechanism for encapsulating information and keeping it simple across the network,
they can also be written to allow participants to execute certain aspects of transactions automatically.

A smart contract can, for example, be written to stipulate the cost of shipping an item where the shipping charge
changes depending on how quickly the item arrives. With the terms agreed to by both parties and written to the ledger,
the appropriate funds change hands automatically when the item is received.

Consensus

The process of keeping the ledger transactions synchronized across the network — to ensure that ledgers update only
when transactions are approved by the appropriate participants, and that when ledgers do update, they update with the
same transactions in the same order — is called consensus.

4.1. Introduction 19

hyperledger-fabricdocs Documentation, Release master

Ol
O

You’ll learn a lot more about ledgers, smart contracts and consensus later. For now, it’s enough to think of a blockchain
as a shared, replicated transaction system which is updated via smart contracts and kept consistently synchronized
through a collaborative process called consensus.

4.1.2 Why is a Blockchain useful?

Today’s Systems of Record

The transactional networks of today are little more than slightly updated versions of networks that have existed since
business records have been kept. The members of a business network transact with each other, but they maintain
separate records of their transactions. And the things they re transacting — whether it’s Flemish tapestries in the 16th
century or the securities of today — must have their provenance established each time they’re sold to ensure that the
business selling an item possesses a chain of title verifying their ownership of it.

What you’re left with is a business network that looks like this:

20 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Modern technology has taken this process from stone tablets and paper folders to hard drives and cloud platforms, but
the underlying structure is the same. Unified systems for managing the identity of network participants do not exist,
establishing provenance is so laborious it takes days to clear securities transactions (the world volume of which is
numbered in the many trillions of dollars), contracts must be signed and executed manually, and every database in the
system contains unique information and therefore represents a single point of failure.

It’s impossible with today’s fractured approach to information and process sharing to build a system of record that
spans a business network, even though the needs of visibility and trust are clear.

The Blockchain Difference

What if, instead of the rat’s nest of inefficiencies represented by the “modern” system of transactions, business net-
works had standard methods for establishing identity on the network, executing transactions, and storing data? What
if establishing the provenance of an asset could be determined by looking through a list of transactions that, once
written, cannot be changed, and can therefore be trusted?

That business network would look more like this:

4.1. Introduction 21

hyperledger-fabricdocs Documentation, Release master

EEEEEEE,

]

OO OO0

This is a blockchain network, wherein every participant has their own replicated copy of the ledger. In addition to
ledger information being shared, the processes which update the ledger are also shared. Unlike today’s systems, where
a participant’s private programs are used to update their private ledgers, a blockchain system has shared programs
to update shared ledgers.

With the ability to coordinate their business network through a shared ledger, blockchain networks can reduce the
time, cost, and risk associated with private information and processing while improving trust and visibility.

You now know what blockchain is and why it’s useful. There are a lot of other details that are important, but they all
relate to these fundamental ideas of the sharing of information and processes.

4.1.3 What is Hyperledger Fabric?

The Linux Foundation founded the Hyperledger project in 2015 to advance cross-industry blockchain technologies.
Rather than declaring a single blockchain standard, it encourages a collaborative approach to developing blockchain
technologies via a community process, with intellectual property rights that encourage open development and the
adoption of key standards over time.

Hyperledger Fabric is one of the blockchain projects within Hyperledger. Like other blockchain technologies, it has a
ledger, uses smart contracts, and is a system by which participants manage their transactions.

22 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Where Hyperledger Fabric breaks from some other blockchain systems is that it is private and permissioned. Rather
than an open permissionless system that allows unknown identities to participate in the network (requiring protocols
like “proof of work™ to validate transactions and secure the network), the members of a Hyperledger Fabric network
enroll through a trusted Membership Service Provider (MSP).

Hyperledger Fabric also offers several pluggable options. Ledger data can be stored in multiple formats, consensus
mechanisms can be swapped in and out, and different MSPs are supported.

Hyperledger Fabric also offers the ability to create channels, allowing a group of participants to create a separate ledger
of transactions. This is an especially important option for networks where some participants might be competitors and
not want every transaction they make — a special price they’re offering to some participants and not others, for
example — known to every participant. If two participants form a channel, then those participants — and no others —
have copies of the ledger for that channel.

Shared Ledger

Hyperledger Fabric has a ledger subsystem comprising two components: the world state and the transaction log.
Each participant has a copy of the ledger to every Hyperledger Fabric network they belong to.

The world state component describes the state of the ledger at a given point in time. It’s the database of the ledger. The
transaction log component records all transactions which have resulted in the current value of the world state; it’s the
update history for the world state. The ledger, then, is a combination of the world state database and the transaction
log history.

The ledger has a replaceable data store for the world state. By default, this is a LevelDB key-value store database.
The transaction log does not need to be pluggable. It simply records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

Hyperledger Fabric smart contracts are written in chaincode and are invoked by an application external to the
blockchain when that application needs to interact with the ledger. In most cases, chaincode interacts only with
the database component of the ledger, the world state (querying it, for example), and not the transaction log.

Chaincode can be implemented in several programming languages. Currently, Go, Node.js, and Java chaincode are
supported.

Privacy

Depending on the needs of a network, participants in a Business-to-Business (B2B) network might be extremely
sensitive about how much information they share. For other networks, privacy will not be a top concern.

Hyperledger Fabric supports networks where privacy (using channels) is a key operational requirement as well as
networks that are comparatively open.

Consensus

Transactions must be written to the ledger in the order in which they occur, even though they might be between
different sets of participants within the network. For this to happen, the order of transactions must be established and a
method for rejecting bad transactions that have been inserted into the ledger in error (or maliciously) must be put into
place.

This is a thoroughly researched area of computer science, and there are many ways to achieve it, each with different
trade-offs. For example, PBFT (Practical Byzantine Fault Tolerance) can provide a mechanism for file replicas to
communicate with each other to keep each copy consistent, even in the event of corruption. Alternatively, in Bitcoin,
ordering happens through a process called mining where competing computers race to solve a cryptographic puzzle
which defines the order that all processes subsequently build upon.

Hyperledger Fabric has been designed to allow network starters to choose a consensus mechanism that best represents
the relationships that exist between participants. As with privacy, there is a spectrum of needs; from networks that are
highly structured in their relationships to those that are more peer-to-peer.

4.1. Introduction 23

hyperledger-fabricdocs Documentation, Release master

4.2 Hyperledger Fabric Model

This section outlines the key design features woven into Hyperledger Fabric that fulfill its promise of a comprehensive,
yet customizable, enterprise blockchain solution:

* Assets — Asset definitions enable the exchange of almost anything with monetary value over the network, from
whole foods to antique cars to currency futures.

* Chaincode — Chaincode execution is partitioned from transaction ordering, limiting the required levels of trust
and verification across node types, and optimizing network scalability and performance.

* Ledger Features — The immutable, shared ledger encodes the entire transaction history for each channel, and
includes SQL-like query capability for efficient auditing and dispute resolution.

» Privacy — Channels and private data collections enable private and confidential multi-lateral transactions that
are usually required by competing businesses and regulated industries that exchange assets on a common net-
work.

* Security & Membership Services — Permissioned membership provides a trusted blockchain network, where
participants know that all transactions can be detected and traced by authorized regulators and auditors.

* Consensus — A unique approach to consensus enables the flexibility and scalability needed for the enterprise.

4.2.1 Assets

Assets can range from the tangible (real estate and hardware) to the intangible (contracts and intellectual property).
Hyperledger Fabric provides the ability to modify assets using chaincode transactions.

Assets are represented in Hyperledger Fabric as a collection of key-value pairs, with state changes recorded as trans-
actions on a Channel ledger. Assets can be represented in binary and/or JSON form.

4.2.2 Chaincode

Chaincode is software defining an asset or assets, and the transaction instructions for modifying the asset(s); in other
words, it’s the business logic. Chaincode enforces the rules for reading or altering key-value pairs or other state
database information. Chaincode functions execute against the ledger’s current state database and are initiated through
a transaction proposal. Chaincode execution results in a set of key-value writes (write set) that can be submitted to the
network and applied to the ledger on all peers.

4.2.3 Ledger Features

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State transitions are a result
of chaincode invocations (‘transactions’) submitted by participating parties. Each transaction results in a set of asset
key-value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in blocks, as well as a state
database to maintain current fabric state. There is one ledger per channel. Each peer maintains a copy of the ledger
for each channel of which they are a member.

Some features of a Fabric ledger:
* Query and update ledger using key-based lookups, range queries, and composite key queries
» Read-only queries using a rich query language (if using CouchDB as state database)

* Read-only history queries — Query ledger history for a key, enabling data provenance scenarios

24 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

* Transactions consist of the versions of keys/values that were read in chaincode (read set) and keys/values that
were written in chaincode (write set)

» Transactions contain signatures of every endorsing peer and are submitted to ordering service
* Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a channel
* Peers validate transactions against endorsement policies and enforce the policies

* Prior to appending a block, a versioning check is performed to ensure that states for assets that were read have
not changed since chaincode execution time

 There is immutability once a transaction is validated and committed

* A channel’s ledger contains a configuration block defining policies, access control lists, and other pertinent
information

* Channels contain Membership Service Provider instances allowing for crypto materials to be derived from
different certificate authorities

See the ledger topic for a deeper dive on the databases, storage structure, and “query-ability.”

4.2.4 Privacy

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well as chaincode that can manipulate
and modify the current state of assets (i.e. update key-value pairs). A ledger exists in the scope of a channel — it can
be shared across the entire network (assuming every participant is operating on one common channel) — or it can be
privatized to include only a specific set of participants.

In the latter scenario, these participants would create a separate channel and thereby isolate/segregate their transactions
and ledger. In order to solve scenarios that want to bridge the gap between total transparency and privacy, chaincode
can be installed only on peers that need to access the asset states to perform reads and writes (in other words, if a
chaincode is not installed on a peer, it will not be able to properly interface with the ledger).

When a subset of organizations on that channel need to keep their transaction data confidential, a private data collection
(collection) is used to segregate this data in a private database, logically separate from the channel ledger, accessible
only to the authorized subset of organizations.

Thus, channels keep transactions private from the broader network whereas collections keep data private between
subsets of organizations on the channel.

To further obfuscate the data, values within chaincode can be encrypted (in part or in total) using common cryp-
tographic algorithms such as AES before sending transactions to the ordering service and appending blocks to the
ledger. Once encrypted data has been written to the ledger, it can be decrypted only by a user in possession of the
corresponding key that was used to generate the cipher text.

See the Private Data topic for more details on how to achieve privacy on your blockchain network.

4.2.5 Security & Membership Services

Hyperledger Fabric underpins a transactional network where all participants have known identities. Public Key Infras-
tructure is used to generate cryptographic certificates which are tied to organizations, network components, and end
users or client applications. As a result, data access control can be manipulated and governed on the broader network
and on channel levels. This “permissioned” notion of Hyperledger Fabric, coupled with the existence and capabilities
of channels, helps address scenarios where privacy and confidentiality are paramount concerns.

See the Membership Service Providers (MSP) topic to better understand cryptographic implementations, and the sign,
verify, authenticate approach used in Hyperledger Fabric.

4.2. Hyperledger Fabric Model 25

hyperledger-fabricdocs Documentation, Release master

4.2.6 Consensus

In distributed ledger technology, consensus has recently become synonymous with a specific algorithm, within a
single function. However, consensus encompasses more than simply agreeing upon the order of transactions, and
this differentiation is highlighted in Hyperledger Fabric through its fundamental role in the entire transaction flow,
from proposal and endorsement, to ordering, validation and commitment. In a nutshell, consensus is defined as the
full-circle verification of the correctness of a set of transactions comprising a block.

Consensus is achieved ultimately when the order and results of a block’s transactions have met the explicit policy
criteria checks. These checks and balances take place during the lifecycle of a transaction, and include the usage of
endorsement policies to dictate which specific members must endorse a certain transaction class, as well as system
chaincodes to ensure that these policies are enforced and upheld. Prior to commitment, the peers will employ these
system chaincodes to make sure that enough endorsements are present, and that they were derived from the appropriate
entities. Moreover, a versioning check will take place during which the current state of the ledger is agreed or consented
upon, before any blocks containing transactions are appended to the ledger. This final check provides protection against
double spend operations and other threats that might compromise data integrity, and allows for functions to be executed
against non-static variables.

In addition to the multitude of endorsement, validity and versioning checks that take place, there are also ongoing
identity verifications happening in all directions of the transaction flow. Access control lists are implemented on
hierarchical layers of the network (ordering service down to channels), and payloads are repeatedly signed, verified and
authenticated as a transaction proposal passes through the different architectural components. To conclude, consensus
is not merely limited to the agreed upon order of a batch of transactions; rather, it is an overarching characterization
that is achieved as a byproduct of the ongoing verifications that take place during a transaction’s journey from proposal
to commitment.

Check out the Transaction Flow diagram for a visual representation of consensus.

4.3 How Fabric networks are structured

This topic will describe, at a conceptual level, how Hyperledger Fabric allows organizations to collaborate in the
formation of blockchain networks. If you’re an architect, administrator or developer, you can use this topic to get a
solid understanding of the major structure and process components in a Hyperledger Fabric blockchain network. This
topic will use a manageable example that introduces all of the major components in a blockchain network.

After reading this topic and understanding the concept of policies, you will have a solid understanding of the decisions
that organizations need to make to establish the policies that control a deployed Hyperledger Fabric network. You’ll
also understand how organizations manage network evolution using declarative policies — a key feature of Hyperledger
Fabric. In a nutshell, you’ll understand the major technical components of Hyperledger Fabric and the decisions
organizations need to make about them.

Note: in this topic, we’ll refer to the structure of a network that does not have a “system channel”, a channel run by
the ordering service that ordering nodes are bootstrapped with. For a version of this topic that does use the system
channel, check out Blockchain network.

4.3.1 What is a blockchain network?

A blockchain network is a technical infrastructure that provides ledger and smart contract (which are packaged as
part of a “chaincode”) services to applications. Primarily, smart contracts are used to generate transactions which are
subsequently distributed to every peer node in the network where they are immutably recorded on their copy of the
ledger. The users of applications might be end users using client applications or blockchain network administrators.

In most cases, multiple organizations come together to form a channel on which transactions are invoked on chain-
codes and where permissions are determined by a set of policies that are agreed to when the channel is originally

26 Chapter 4. Key Concepts

https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
../glossary.html#organization
../policies/policies.html

hyperledger-fabricdocs Documentation, Release master

configured. Moreover, policies can change over time subject to the agreement of the organizations.

In this topic, we’ll refer to both the “network” and the “channel”. In Hyperledger Fabric, these terms are
effectively synonymous, as they both refer collectively to the organizations, components, policies, and processes
that govern the interactions between organizations within a defined structure.

4.3.2 The sample network

Before we start, let’s show you what we’re aiming at! Here’s a diagram representing the final state of our sample
network.

It might look complicated right now, but as we go through this topic, we will build up the network piece by piece, so
that you see how the organizations R1, R2, R3 and RO contribute infrastructure to the network to help form it. This
infrastructure implements the blockchain network, and it is governed by policies agreed by the organizations who form
the network — for example, who can add new organizations. You’ll discover how applications consume the ledger and
smart contract services provided by the blockchain network.

Three organizations, R1, R2, and RO have jointly decided that they will establish a network. This network has a
configuration, CC1, which all of the organizations have agreed to and which lists the definition of the organizations as
well as the policies which define the roles each organization will play on the channel.

On this channel, R1 and R2 will join peers, named P1 and P2, to the channel, C1, while RO owns O, the ordering service
of the channel. All of these nodes will contain a copy of the ledger (L1) of the channel, which is where transactions are
recorded. Note that the copy of the ledger kept by the ordering service does not contain a state database. R1 and R2
will also interact with the channel through the applications A1 and A2, which they own. All three organizations have
a Certificate Authority that has generated the necessary certificates for the nodes, admins, organizations definitions,
and applications of its organization.

4.3.3 Creating the network

The first step in creating a network or a channel is to agree to and then define its configuration:

4.3. How Fabric networks are structured 27

../glossary.html#state-database

hyperledger-fabricdocs Documentation, Release master

ALA
oo

The channel configuration, CC1, has been agreed to by organizations R1, R2, and RO and is contained in a block
known as a “configuration block™ that is, typically, created by the configtxgen tool from a configtx.yaml
file. While it is possible for one organization to create this a channel unilaterally and then invite other organizations
to it (we’ll explore this in Adding an organization to an existing channel), for now we’ll assume that the organizations
wish to collaborate on the channel from the beginning.

Once a configuration block exists, a channel can be said to logically exist, even though no components are physically
joined to it. This configuration block contains a record of the organizations that can join components and interact on
the channel, as well as the policies that define the structure for how decisions are made and specific outcomes are
reached. While the peers and applications are critical actors in the network, their behavior in a channel is dictated
more by the channel configuration policy than any other factor. For more information about the policies and how they
are defined in a channel configuration, check out Policies.

The definitions of these organizations, and the identities of their admins, must be created by a Certificate Authority
(CA) associated with each organization. In our example, the organizations R1, R2, and RO have had their certifications
and organization definition created by CA1, CA2, and CAQO, respectively. For information about how to create a CA,
check out Planning for a CA. After the CA has been created, check out Registering and enrolling identities with a CA
for information about how to define an organization and create identities for admins and nodes.

For more information about using configtxgen to create a configuration block, check out Using configtx.yaml to
build a channel configuration.

Certificate Authorities

Certificate Authorities play a key role in the network because they dispense X.509 certificates that can be used to
identify components as belonging to an organization. Certificates issued by CAs can also be used to sign transactions
to indicate that an organization endorses the transaction result — a precondition of it being accepted onto the ledger.
Let’s examine these two aspects of a CA in a little more detail.

Firstly, different components of the blockchain network use certificates to identify themselves to each other as being
from a particular organization. That’s why there is usually more than one CA supporting a blockchain network —
different organizations often use different CAs. We’re going to use three CAs in our channel; one for each organization.
Indeed, CAs are so important that Hyperledger Fabric provides you with a built-in one (called the Fabric-CA) to help
you get going, though in practice, organizations will choose to use their own CA.

28 Chapter 4. Key Concepts

../policies/policies.html
https://hyperledger-fabric-ca.readthedocs.io/en/latest/deployguide/ca-deploy-topology.html
https://hyperledger-fabric-ca.readthedocs.io/en/latest/deployguide/use_CA.html
../create_channel/create_channel_config.html
../create_channel/create_channel_config.html

hyperledger-fabricdocs Documentation, Release master

The mapping of certificates to member organizations is achieved via a structure called a Membership Services Provider
(MSP), which defines an organization by creating an MSP which is tied to a root CA certificate to identify that
components and identities were created by the root CA. The channel configuration can then assign certain rights and
permissions to the organization through a policy (which will give a particular organization, such as R1, the right to
add new organizations to the channel). We don’t show MSPs on these diagrams, as they would clutter them up, but
because they define organizations, they are very important.

Secondly, we’ll see later how certificates issued by CAs are at the heart of the transaction generation and validation
process. Specifically, X.509 certificates are used in client application transaction proposals and smart contract trans-
action responses to digitally sign transactions. Subsequently the network nodes who host copies of the ledger verify
that transaction signatures are valid before accepting transactions onto the ledger.

4.3.4 Join nodes to the channel

Peers are a fundamental element of the network because they host ledgers and chaincode (which contain smart con-
tracts) and are therefore one of the physical points at which organizations that transact on a channel connect to the
channel (the other being an application). A peer can belong to as many channels as an organizations deems appropriate
(depending on factors like the processing limitations of the peer pod and data residency rules that exist in a particular
country). For more information about peers, check out Peers.

The ordering service, on the other hand, gathers endorsed transactions from applications and orders them into transac-
tion blocks, which are subsequently distributed to every peer node in the channel. At each of these committing peers,
transactions are recorded and the local copy of the ledger updated appropriately. An ordering service is unique to a
particular channel, with the nodes servicing that channel also known as a “consenter set”. Even if a node (or group
of nodes) services multiple channels, each channel’s ordering service is considered to be a distinct instance of the
ordering service. For more information about the ordering service, check out The Ordering Service.

For information about how to create peer and ordering nodes, check out Deploying a production network.

Because R1, R2, and RO are listed in the channel configuration, they are allowed to join peers (in the case of R1 and
R2) or ordering nodes (in the case of RO) to the channel.

C1

R1’s peer, P1, and R2’s peer, P2, along with RO’s ordering service, O, join the channel through the process described
in Create a channel without a system channel. Note that while only one ordering node, 1, is joined to this channel, in

4.3. How Fabric networks are structured 29

../membership/membership.html
../membership/membership.html
../glossary.html#transaction
../glossary.html#proposal
../glossary.html#response
../glossary.html#response
../glossary.html#transaction
../peers/peers.html
../orderer/ordering_service.html
../deployment_guide_overview.html
../create_channel/create_channel_participation.html

hyperledger-fabricdocs Documentation, Release master

a production scenario, an ordering service should contain at least three nodes. For the purposes of this topic, however,
it is more important to conceptualize the interactions of the ordering service and the other components of the network
than it is to understand how the needs of high availability impact configuration decisions. The nodes belonging to each
organization have x.509 certificates created for them by the Certificate Authority associated with that organization.
P1’s certificates are created by CA1, P2’s certificates are created by CA2, and so on.

Every node in the channel stores a copy of the ledger of the channel, L1, which will be updated with each new block
(note that the ordering service only contains the blockchain portion of a ledger and not the state database). Because of
this, we can think of L1 as being physically hosted on P1, but logically hosted on the channel C1. The best practice
is for R1 and R2 to make their peers, P1 and P2, anchor peers, as this will bootstrap communication on the network
between R1 and R2.

After the ordering service has been joined to the channel, it is possible to propose and commit updates to the channel
configuration, but little else. Next, you must install, approve, and commit a chaincode on a channel.

4.3.5 Install, approve, and commit a chaincode

Chaincodes are installed on peers, and then defined and committed on a channel:

Cl

In Fabric, the business logic that defines how peer organizations interact with the ledger (for example, a transaction
that changes the ownership of an asset), is contained in a smart contract. The structure that contains the smart contract,
called chaincode, is installed on the relevant peers, approved by the relevant peer organizations, and committed on
the channel. In this way, you can consider a chaincode to be physically hosted on a peer but logically hosted on a
channel. In our example, the chaincode, S5, is installed on every peer, even though organizations are not required to
install every chaincode. Note that the ordering service does not have the chaincode installed on it, as ordering nodes
do not typically propose transactions. The process of installing, approving, and committing a chaincode is known as
the “lifecycle” of the chaincode. For more information, check out Fabric chaincode lifecycle.

The most important piece of information supplied within the chaincode definition is the endorsement policy. It de-
scribes which organizations must endorse transactions before they will be accepted by other organizations onto their
copy of the ledger. An endorsement policy can be set to any combination of members in a channel, depending on
the use case. If an endorsement policy is not set, it is inherited from the default endorsement policy specified in the
channel configuration.

30 Chapter 4. Key Concepts

../glossary.html#state-database
../glossary.html#anchor-peer
../chaincode_lifecycle.html
../glossary.html#endorsement-policy

hyperledger-fabricdocs Documentation, Release master

Note that while some chaincodes include the ability to create private data transactions between members on a channel,
private data is outside the scope of this topic.

While it’s now technically possible to drive transactions using the peer CLI, the best practice is to create an application
and use it to invoke transactions on your chaincode.

4.3.6 Using an application on the channel

After a smart contract has been committed, client applications can be used to invoke transactions on a chaincode. This
completes the structure we showed in the first image:

Just like peers and orderers, a client application has an identity that associates it with an organization. In our example,
client application Al is associated with organization R1 and is connected to C1.

Once a chaincode has been installed on a peer node and defined on a channel it can be invoked by a client application.
Client applications do this by sending transaction proposals to peers owned by the organizations specified by the
endorsement policy. The transaction proposal serves as input to the chaincode, which uses it to generate an endorsed
transaction response, which is returned by the peer node to the client application.

We can see that our peer organizations, R1 and R2, are fully participating in the channel. Their applications can access
the ledger L1 via smart contract S5 to generate transactions that will be endorsed by the organizations specified in the
endorsement policy and written to the ledger.

For more information about how to develop an application, check out Developing applications.

4.3.7 Joining components to multiple channels

Now that we have showed the process for how a channel is created, as well as the nature of the high level interactions
between organizations, nodes, policies, chaincodes, and applications, let’s expand our view by adding a new organi-
zation and a new channel to our scenario. To show how Fabric components can be joined to multiple channels, we’ll
join R2 and its peer, P2, to the new channel, while R1 and P1 will not be joined.

4.3. How Fabric networks are structured 31

../private_data_tutorial.html
../glossary.html#invoke
../developapps/developing_applications.html

hyperledger-fabricdocs Documentation, Release master

Creating the new channel configuration

As we’ve seen, the first step in creating a channel is to create its configuration. This channel will include not just R2
and RO, but a new organization, R3, which has had its identities and certificates created for it by CA3. R1 will have
no rights over this channel and will not be able to join components to it. In fact, it has no way to know it even exists!

DT/ﬂj N

-
55 R - V.

As before, now that the channel configuration, CC2, has been created, the channel can be said to logically exist, even
though no components are joined to it.

ANL

CC2

So let’s join some components to it!

Join components to the new channel

Just as we did with C1, let’s join our components to C2. Because we already showed how all channels have a ledger
and how chaincodes are installed on peers and committed to a channel (in this case, the chaincode is called S6), we’ll
skip those steps for now to show the end state of C2. Note that this channel has its own ledger, L2, which is completely
separate from the ledger of C1. That’s because even though R2 (and its peer, P2) are joined to both channels, the two
channels are entirely separate administrative domains.

32 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Note that while both C1 and C2 both have the same orderer organization joined to it, RO, different ordering nodes
are servicing each channel. This is not a mandatory configuration because even if the same ordering nodes are joined
to multiple channels, each channel has a separate instance of the ordering service, and is more common in channels

in which multiple orderer organizations come together to contribute nodes to an ordering service. Note that only the
ordering node joined to a particular channel has the ledger of that channel.

While it would also be possible for R2 to deploy a new peer to join to channel C2, in this case they have chosen to
deploy the P2 to C2. Note that P2 has both the ledger of C1 (called L1) and the ledger of C2 (called L2) on its file
system. Similarly, R2 has chosen to modify its application, A2, to be able to be used with C2, while R3’s application,
A3, is being used with C2.

Logically, this is all very similar to the creation of Cl1. Two peer organizations come together with an ordering
organization to create a channel and join components and a chaincode to it.

Think about this configuration from the standpoint of R2, which is joined to both channels. From their perspective,
they might think about both C1 and C2, as well as the components they have joined to both, as the “network”, even
though both channels are distinct from each other. In this sense, a “network” can also be seen as existing within the
perspective of a particular organization as “all of the channels I am a member of and all of the components I own”.

Now that we have shown how organizations and their components can be joined to multiple channels, let’s talk about
how an organization and its components are added to an existing channel.

4.3.8 Adding an organization to an existing channel

As channels mature, it is natural that its configuration will also mature, reflecting changes in the world that must be
reflected in the channel. One of the more common ways a channel will be modified is to add new organizations to
it. While it also possible to add more orderer organizations (who may or may not contribute their own nodes), in
this example we’ll describe the process of how a peer organization, R3, is added to the channel configuration CC1 of
channel C1.

Note that rights and permissions are defined at a channel level. Just because an organization is an administrator
of one channel does not mean it will be an administrator of a different channel. Each channel is a distinct
administrative zone and fully customizable to the use case it’s serving.

4.3. How Fabric networks are structured 33

hyperledger-fabricdocs Documentation, Release master

D?D

B0

Although the update to the diagram looks like one simple step, adding a new organization to a channel is, at a high
level, a three step process:

1. Decide on the new organization’s permissions and role. The full scope of these rights must be agreed to before
R3 is added to C1 and is beyond the scope of this topic, but comprise the same kinds of questions that must
be answered when creating a channel in the first place. What kind of permissions and rights will R3 have on
C1? Will it be an admin on the channel? Will its access to any channel resources be restricted (for example, R3
might only be able to write to C1, which means it can propose changes but not sign them)? What chaincodes
will R3 install on its peers?

2. Update the channel, including the relevant chaincodes, to reflect these decisions.
3. The organization joins its peer nodes (and potentially ordering nodes) to the channel and begins participating.

In this topic, we’ll assume that R3 will join C1 with the same rights and status enjoyed by R1 and R2. Similarly, R3
will also be joined as an endorser of the S5 chaincode, which means that R1 or R2 must redefine S5 (specifically, the
endorsement policy section of the chaincode definition) and approve it on the channel.

Updating the channel configuration creates a new configuration block, CC1.1, which will serve as the channel config-
uration until it is updated again. Note that even though the configuration has changed, the channel still exists and P1
and P2 are still joined to it. There is no need to re-add organizations or peers to the channel.

For more information about the process of adding an organization to a channel, check out Adding an org to a channel.
For more information about policies (which define the roles organizations have on a channel), check out Policies.

For more information about upgrading a chaincode, check out Upgrade a chaincode.
Adding existing components to the newly joined channel
Now that R3 is able to fully participate in channel C2, it can add its components to the channel. Rather than do this

one component at a time, let’s show how its peer, its local copy of a ledger, a smart contract and a client application
can be joined all at once!

34 Chapter 4. Key Concepts

../channel_update_tutorial.html
../policies/policies.html
../chaincode_lifecycle.html#upgrade-a-chaincode

hyperledger-fabricdocs Documentation, Release master

il - [0

In this example, R3 adds P3, which was previously joined to C2, to C1. When it does this, P3 pulls C1’s ledger, L1.
As we mentioned in the previous section, R3 has been added to C1 with equivalent rights as R1 and R2. Similarly,
because the chaincode S5 was redefined and reapproved on the channel to include R3, R3 can now install S5 and begin

transacting. Just as R2 modified its application A2 to be able to be used with channel C2, A3 is also now able to invoke
transactions on Cl1.

4.3.9 Network recap

We’ve covered a lot of ground in this topic. We’ve gone from a simple configuration with two organizations transacting
on a single channel to multiple organizations transacting on multiple channels as well as the process for joining an
organization to a channel that already exists.

While this topic represents a relatively simple case, there are endless combinations of sophisticated topologies which
are possible to achieve in Fabric, supporting an endless number of operational goals, and no theoretical limit to how
big a network can get. The careful use of network and channel policies allow even large networks to be well-governed.

4.4 |dentity

4.4.1 What is an Identity?

The different actors in a blockchain network include peers, orderers, client applications, administrators and more. Each
of these actors — active elements inside or outside a network able to consume services — has a digital identity encap-
sulated in an X.509 digital certificate. These identities really matter because they determine the exact permissions
over resources and access to information that actors have in a blockchain network.

A digital identity furthermore has some additional attributes that Fabric uses to determine permissions, and it gives
the union of an identity and the associated attributes a special name — principal. Principals are just like userIDs or
groupIDs, but a little more flexible because they can include a wide range of properties of an actor’s identity, such as
the actor’s organization, organizational unit, role or even the actor’s specific identity. When we talk about principals,
they are the properties which determine their permissions.

For an identity to be verifiable, it must come from a trusted authority. A membership service provider (MSP) is
that trusted authority in Fabric. More specifically, an MSP is a component that defines the rules that govern the

4.4. Identity 35

../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

valid identities for this organization. The default MSP implementation in Fabric uses X.509 certificates as identities,
adopting a traditional Public Key Infrastructure (PKI) hierarchical model (more on PKI later).

4.4.2 A Simple Scenario to Explain the Use of an Identity

Imagine that you visit a supermarket to buy some groceries. At the checkout you see a sign that says that only Visa,
Mastercard and AMEX cards are accepted. If you try to pay with a different card — let’s call it an “ImagineCard” —
it doesn’t matter whether the card is authentic and you have sufficient funds in your account. It will be not be accepted.

ol (= @

o)

Having a valid credit card is not enough — it must also be accepted by the store! PKIs and MSPs work together in the
same way — a PKI provides a list of identities, and an MSP says which of these are members of a given organization
that participates in the network.

PKI certificate authorities and MSPs provide a similar combination of functionalities. A PKI is like a card provider —
it dispenses many different types of verifiable identities. An MSP, on the other hand, is like the list of card providers
accepted by the store, determining which identities are the trusted members (actors) of the store payment network.
MSPs turn verifiable identities into the members of a blockchain network.

Let’s drill into these concepts in a little more detail.

4.4.3 What are PKls?

A public key infrastructure (PKI) is a collection of internet technologies that provides secure communications
in a network. It’s PKI that puts the S in HTTPS — and if you’re reading this documentation on a web browser, you’re
probably using a PKI to make sure it comes from a verified source.

36 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Certificate
Authority

!

Principal

request certificate

Certificate
. . > — public key
Revocation List issue certificate & = O'I'I'I
[]
Digital
Certificate

- |&=| [&=| [&=] 8= |8

The elements of Public Key Infrastructure (PKI). A PKI is comprised of Certificate Authorities who issue digital
certificates to parties (e.g., users of a service, service provider), who then use them to authenticate themselves in the
messages they exchange in their environment. A CA’s Certificate Revocation List (CRL) constitutes a reference for the
certificates that are no longer valid. Revocation of a certificate can happen for a number of reasons. For example, a
certificate may be revoked because the cryptographic private material associated to the certificate has been exposed.

Although a blockchain network is more than a communications network, it relies on the PKI standard to ensure
secure communication between various network participants, and to ensure that messages posted on the blockchain are
properly authenticated. It’s therefore important to understand the basics of PKI and then why MSPs are so important.

There are four key elements to PKI:
« Digital Certificates
¢ Public and Private Keys
¢ Certificate Authorities
* Certificate Revocation Lists

Let’s quickly describe these PKI basics, and if you want to know more details, Wikipedia is a good place to start.

4.4.4 Digital Certificates

A digital certificate is a document which holds a set of attributes relating to the holder of the certificate. The most
common type of certificate is the one compliant with the X.509 standard, which allows the encoding of a party’s
identifying details in its structure.

For example, Mary Morris in the Manufacturing Division of Mitchell Cars in Detroit, Michigan might have
a digital certificate with a SUBJECT attribute of C=US, ST=Michigan, L=Detroit, O=Mitchell Cars,
OU=Manufacturing, CN=Mary Morris /UID=123456. Mary’s certificate is similar to her government iden-
tity card — it provides information about Mary which she can use to prove key facts about her. There are many other
attributes in an X.509 certificate, but let’s concentrate on just these for now.

4.4. Identity 37

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/X.509

hyperledger-fabricdocs Documentation, Release master

Mary Morris

A digital certificate describing a party called Mary Morris. Mary is the SUBJECT of the certificate, and the high-
lighted SUBJECT text shows key facts about Mary. The certificate also holds many more pieces of information, as you
can see. Most importantly, Mary’s public key is distributed within her certificate, whereas her private signing key is
not. This signing key must be kept private.

What is important is that all of Mary’s attributes can be recorded using a mathematical technique called cryptography
(literally, “secret writing”) so that tampering will invalidate the certificate. Cryptography allows Mary to present her
certificate to others to prove her identity so long as the other party trusts the certificate issuer, known as a Certificate
Authority (CA). As long as the CA keeps certain cryptographic information securely (meaning, its own private
signing key), anyone reading the certificate can be sure that the information about Mary has not been tampered with
— it will always have those particular attributes for Mary Morris. Think of Mary’s X.509 certificate as a digital identity
card that is impossible to change.

4.4.5 Authentication, Public keys, and Private Keys

Authentication and message integrity are important concepts in secure communications. Authentication requires that
parties who exchange messages are assured of the identity that created a specific message. For a message to have
“integrity” means that cannot have been modified during its transmission. For example, you might want to be sure
you’re communicating with the real Mary Morris rather than an impersonator. Or if Mary has sent you a message, you
might want to be sure that it hasn’t been tampered with by anyone else during transmission.

Traditional authentication mechanisms rely on digital signatures that, as the name suggests, allow a party to digitally
sign its messages. Digital signatures also provide guarantees on the integrity of the signed message.

Technically speaking, digital signature mechanisms require each party to hold two cryptographically connected keys:
a public key that is made widely available and acts as authentication anchor, and a private key that is used to produce
digital signatures on messages. Recipients of digitally signed messages can verify the origin and integrity of a
received message by checking that the attached signature is valid under the public key of the expected sender.

The unique relationship between a private key and the respective public key is the cryptographic magic that
makes secure communications possible. The unique mathematical relationship between the keys is such that the
private key can be used to produce a signature on a message that only the corresponding public key can match, and
only on the same message.

38 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Mary Morris

0-|'|'| Mary’s public key
[]

Mary's ®
orMﬁna] —
document
As I was

going to St
Ives, I met
a man with
seven cats}
each cat
had seven
kittens.

Signed version
of document

As I was
going to St
Ives, I met
a man with
seven cats;
each cat
had seven
kittens.

9

Signature

xprzaglr | OFm (X13vRZQql41)
verified as authentic
Tampered using public key
version of
document
Az I was

going to St
Ives, I met
a man with
eight cats;
each cat
had seven
kittens.

X13vRZQql41

®

Signature

(X13vRZQgL41)

incorrect according to
public key

Om

Verifying
Principal

In the example above, Mary uses her private key to sign the message. The signature can be verified by anyone who
sees the signed message using her public key.

4.4.6 Certificate Authorities

As you’ve seen, an actor or a node is able to participate in the blockchain network, via the means of a digital identity
issued for it by an authority trusted by the system. In the most common case, digital identities (or simply identities)
have the form of cryptographically validated digital certificates that comply with X.509 standard and are issued by a
Certificate Authority (CA).

CAs are a common part of internet security protocols, and you’ve probably heard of some of the more popular ones:
Symantec (originally Verisign), GeoTrust, DigiCert, GoDaddy, and Comodo, among others.

p

<

Certificate
Authority

N

)

issue signed
certificates

8=| |4

0= @

®m

A Certificate Authority dispenses certificates to different actors. These certificates are digitally signed by the CA and

4.4. Identity

39

hyperledger-fabricdocs Documentation, Release master

bind together the actor with the actor’s public key (and optionally with a comprehensive list of properties). As a result,
if one trusts the CA (and knows its public key), it can trust that the specific actor is bound to the public key included in
the certificate, and owns the included attributes, by validating the CA’s signature on the actor’s certificate.

Certificates can be widely disseminated, as they do not include either the actors’ nor the CA’s private keys. As such
they can be used as anchor of trusts for authenticating messages coming from different actors.

CAs also have a certificate, which they make widely available. This allows the consumers of identities issued by a given
CA to verify them by checking that the certificate could only have been generated by the holder of the corresponding
private key (the CA).

In a blockchain setting, every actor who wishes to interact with the network needs an identity. In this setting, you might
say that one or more CAs can be used to define the members of an organization’s from a digital perspective. It’s
the CA that provides the basis for an organization’s actors to have a verifiable digital identity.

Root CAs, Intermediate CAs and Chains of Trust

CAs come in two flavors: Root CAs and Intermediate CAs. Because Root CAs (Symantec, Geotrust, etc) have to
securely distribute hundreds of millions of certificates to internet users, it makes sense to spread this process out
across what are called Intermediate CAs. These Intermediate CAs have their certificates issued by the root CA or
another intermediate authority, allowing the establishment of a “chain of trust” for any certificate that is issued by
any CA in the chain. This ability to track back to the Root CA not only allows the function of CAs to scale while
still providing security — allowing organizations that consume certificates to use Intermediate CAs with confidence
— it limits the exposure of the Root CA, which, if compromised, would endanger the entire chain of trust. If an
Intermediate CA is compromised, on the other hand, there will be a much smaller exposure.

RCA signs ICA1 ICAT signs ICA2 ICAZ2 signs ICA3
. certificate certificate certificate
RCA signs
own m
certificate _

o

Root Intermediate
RCA

I: |}
L=
Yellow certificates Green certificates Blue certificates Grey certificates
signed by RCA signed by ICAL signed by ICA2 signed by ICA3

A chain of trust is established between a Root CA and a set of Intermediate CAs as long as the issuing CA for the
certificate of each of these Intermediate CAs is either the Root CA itself or has a chain of trust to the Root CA.

Intermediate CAs provide a huge amount of flexibility when it comes to the issuance of certificates across multiple
organizations, and that’s very helpful in a permissioned blockchain system (like Fabric). For example, you’ll see that
different organizations may use different Root CAs, or the same Root CA with different Intermediate CAs — it really
does depend on the needs of the network.

40 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Fabric CA

It’s because CAs are so important that Fabric provides a built-in CA component to allow you to create CAs in the
blockchain networks you form. This component — known as Fabric CA is a private root CA provider capable of
managing digital identities of Fabric participants that have the form of X.509 certificates. Because Fabric CA is
a custom CA targeting the Root CA needs of Fabric, it is inherently not capable of providing SSL certificates for
general/automatic use in browsers. However, because some CA must be used to manage identity (even in a test
environment), Fabric CA can be used to provide and manage certificates. It is also possible — and fully appropriate
— to use a public/commercial root or intermediate CA to provide identification.

If you’re interested, you can read a lot more about Fabric CA in the CA documentation section.

4.4.7 Certificate Revocation Lists

A Certificate Revocation List (CRL) is easy to understand — it’s just a list of references to certificates that a CA knows
to be revoked for one reason or another. If you recall the store scenario, a CRL would be like a list of stolen credit
cards.

When a third party wants to verify another party’s identity, it first checks the issuing CA’s CRL to make sure that
the certificate has not been revoked. A verifier doesn’t have to check the CRL, but if they don’t they run the risk of
accepting a compromised identity.

Certificate Validating Impersonating
Authority Principal Principal
present
revoked
certificate

Certificate
Revocation List

!

]
]
]
7y

> |&=| |4=] 4=/ |A=] |&

Using a CRL to check that a certificate is still valid. If an impersonator tries to pass a compromised digital certificate
to a validating party, it can be first checked against the issuing CA’s CRL to make sure it’s not listed as no longer
valid.

Note that a certificate being revoked is very different from a certificate expiring. Revoked certificates have not expired
— they are, by every other measure, a fully valid certificate. For more in-depth information about CRLs, click here.

Now that you’ve seen how a PKI can provide verifiable identities through a chain of trust, the next step is to see how
these identities can be used to represent the trusted members of a blockchain network. That’s where a Membership
Service Provider (MSP) comes into play — it identifies the parties who are the members of a given organization
in the blockchain network.

To learn more about membership, check out the conceptual documentation on MSPs.

4.4. Identity 41

http://hyperledger-fabric-ca.readthedocs.io/
https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#generating-a-crl-certificate-revocation-list
../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

4.5 Membership Service Provider (MSP)

Note: this topic describes a network that does not use a “system channel”, a channel that the ordering service is
bootstrapped with and the ordering service exclusively controls. Since the release of v2.3, using system channel is
now considered the legacy process as compared to the process to Create a channel without a system channel. For
a version of this topic that includes information about the system channel, check out Membership Service Provider
(MSP) from the v2.2 documentation.

4.5.1 Why do | need an MSP?

Because Fabric is a permissioned network, blockchain participants need a way to prove their identity to the rest of the
network in order to transact on the network. If you’ve read through the documentation on Identity you’ve seen how
a Public Key Infrastructure (PKI) can provide verifiable identities through a chain of trust. How is that chain of trust
used by the blockchain network?

Certificate Authorities issue identities by generating a public and private key which forms a key-pair that can be used
to prove identity. Because a private key can never be shared publicly, a mechanism is required to enable that proof
which is where the MSP comes in. For example, a peer uses its private key to digitally sign, or endorse, a transaction.
The MSP on the ordering service contains the peer’s public key which is then used to verify that the signature attached
to the transaction is valid. The private key is used to produce a signature on a transaction that only the corresponding
public key, that is part of an MSP, can match. Thus, the MSP is the mechanism that allows that identity to be trusted
and recognized by the rest of the network without ever revealing the member’s private key.

Recall from the credit card scenario in the Identity topic that the Certificate Authority is like a card provider — it
dispenses many different types of verifiable identities. An MSP, on the other hand, determines which credit card
providers are accepted at the store. In this way, the MSP turns an identity (the credit card) into a role (the ability to
buy things at the store).

This ability to turn verifiable identities into roles is fundamental to the way Fabric networks function, since it al-
lows organizations, nodes, and channels the ability establish MSPs that determine who is allowed to do what at the
organization, node, and channel level.

MSP

Identities

—o|[—o C

=2||=° ‘E:’

Identities are similar to your credit cards that are used to prove you can pay. The MSP is similar to the list of accepted
credit cards.

Consider a group of banks that operate a blockchain network. Each bank operates peer and ordering nodes, and the
peers endorse transactions submitted to the network. However, each bank would also have departments and account
holders. The account holders would belong to each organization, but would not run nodes on the network. They
would only interact with the system from their mobile or web application. So how does the network recognize and
differentiate these identities? A CA was used to create the identities, but like the card example, those identities can’t

42 Chapter 4. Key Concepts

../create_channel/create_channel_participation.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/membership/membership.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

just be issued, they need to be recognized by the network. MSPs are used to define the organizations that are trusted
by the network members. MSPs are also the mechanism that provide members with a set of roles and permissions
within the network. Because the MSPs defining these organizations are known to the members of a network, they can
then be used to validate that network entities that attempt to perform actions are allowed to.

Finally, consider if you want to join an existing network, you need a way to turn your identity into something that is
recognized by the network. The MSP is the mechanism that enables you to participate on a permissioned blockchain
network. To transact on a Fabric network a member needs to:

1. Have an identity issued by a CA that is trusted by the network.

2. Become a member of an organization that is recognized and approved by the network members. The MSP
is how the identity is linked to the membership of an organization. Membership is achieved by adding the
member’s public key (also known as certificate, signing cert, or signcert) to the organization’s MSP.

3. Add the MSP to a channel.

4. Ensure the MSP is included in the policy definitions on the network.

4.5.2 What is an MSP?

Despite its name, the Membership Service Provider does not actually provide anything. Rather, the implementation
of the MSP requirement is a set of folders that are added to the configuration of the network and is used to define an
organization both inwardly (organizations decide who its admins are) and outwardly (by allowing other organizations
to validate that entities have the authority to do what they are attempting to do). Whereas Certificate Authorities
generate the certificates that represent identities, the MSP contains a list of permissioned identities.

The MSP identifies which Root CAs and Intermediate CAs are accepted to define the members of a trust domain by
listing the identities of their members, or by identifying which CAs are authorized to issue valid identities for their
members.

But the power of an MSP goes beyond simply listing who is a network participant or member of a channel. It is the
MSP that turns an identity into a role by identifying specific privileges an actor has on a node or channel. Note that
when a user is registered with a Fabric CA, arole of admin, peer, client, orderer, or member must be associated with the
user. For example, identities registered with the “peer” role should, naturally, be given to a peer. Similarly, identities
registered with the “admin” role should be given to organization admins. We’ll delve more into the significance of
these roles later in the topic.

In addition, an MSP can allow for the identification of a list of identities that have been revoked — as discussed in the
Identity documentation — but we will talk about how that process also extends to an MSP.

4.5.3 MSP domains

MSPs occur in two domains in a blockchain network:
* Locally on an actor’s node (local MSP)
¢ In channel configuration (channel MSP)

The key difference between local and channel MSPs is not how they function — both turn identities into roles — but
their scope. Each MSP lists roles and permissions at a particular level of administration.

Local MSPs

Local MSPs are defined for clients and for nodes (peers and orderers). Local MSPs define the permissions for a
node (who are the peer admins who can operate the node, for example). The local MSPs of clients (the account holders
in the banking scenario above), allow the user to authenticate itself in its transactions as a member of a channel (e.g. in

4.5. Membership Service Provider (MSP) 43

../policies/policies.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

chaincode transactions), or as the owner of a specific role into the system such as an organization admin, for example,
in configuration transactions.

Every node must have a local MSP defined, as it defines who has administrative or participatory rights at that
level (peer admins will not necessarily be channel admins, and vice versa). This allows for authenticating member
messages outside the context of a channel and to define the permissions over a particular node (who has the ability to
install chaincode on a peer, for example). Note that one or more nodes can be owned by an organization. An MSP
defines the organization admins. And the organization, the admin of the organization, the admin of the node, and the
node itself should all have the same root of trust.

An orderer local MSP is also defined on the file system of the node and only applies to that node. Like peer nodes,
orderers are also owned by a single organization and therefore have a single MSP to list the actors or nodes it trusts.

Channel MSPs

In contrast, channel MSPs define administrative and participatory rights at the channel level. Peers and ordering
nodes on an application channel share the same view of channel MSPs, and will therefore be able to correctly authen-
ticate the channel participants. This means that if an organization wishes to join the channel, an MSP incorporating
the chain of trust for the organization’s members would need to be included in the channel configuration. Otherwise
transactions originating from this organization’s identities will be rejected. Whereas local MSPs are represented as a
folder structure on the file system, channel MSPs are described in a channel configuration.

Snippet from a channel config.json file that includes two organization MSPs.

Channel MSPs identify who has authorities at a channel level. The channel MSP defines the relationship be-
tween the identities of channel members (which themselves are MSPs) and the enforcement of channel level policies.
Channel MSPs contain the MSPs of the organizations of the channel members.

Every organization participating in a channel must have an MSP defined for it. In fact, it is recommended that
there is a one-to-one mapping between organizations and MSPs. The MSP defines which members are empowered to
act on behalf of the organization. This includes configuration of the MSP itself as well as approving administrative
tasks that the organization has role, such as adding new members to a channel. If all network members were part of a
single organization or MSP, data privacy is sacrificed. Multiple organizations facilitate privacy by segregating ledger
data to only channel members. If more granularity is required within an organization, the organization can be further
divided into organizational units (OUs) which we describe in more detail later in this topic.

The channel MSP includes the MSPs of all the organizations on a channel. This includes not just “peer organiza-
tions”, which own peers and invoke chaincodes, but the organizations that own and run the ordering service.

Local MSPs are only defined on the file system of the node or user to which they apply. Therefore, physically and
logically there is only one local MSP per node. However, as channel MSPs are available to all nodes in the channel,
they are logically defined once in the channel configuration. However, a channel MSP is also instantiated on the file
system of every node in the channel and kept synchronized via consensus. So while there is a copy of each channel
MSP on the local file system of every node, logically a channel MSP resides on and is maintained by the channel or
the network.

The following diagram illustrates how local and channel MSPs coexist on the network:

44 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

(== N\

Blockchain Network

i1
|

Local MSP Channel
Membership
Services Provider

RCA2 ORGZ.MSP [SEIE - C — r b
= eer
ORG1.MSP ch
Global MSPs \ 5

Orderer

\ |
\ /

\ Global MSP " N/

Certificate Authority

@80 o>

In this figure, ORGI, owns the ordering node joined to the channel. The MSPs related to ORGI, the local MSP of
the node and the global MSP that formally represents ORGI on the channel, have been created by RCAI, the CA
for ORGI. The peer organization, ORG2, also has a local MSP for its peer and another global MSP that represents
ORG?2 on the channel. Both ORGI and ORG?2 are channel members, and manage the channel in their areas of
administration, and trust identities created by each other’s CA. Note that in a production scenario, it is likely that
there will be several peer organizations who collaborate in the administration of the channel, and potentially more
than one orderer organization as well.

4.5.4 What role does an organization play in an MSP?

An organization is a logical managed group of members. This can be something as big as a multinational corporation
or a small as a flower shop. What’s most important about organizations (or orgs) is that they manage their members
under a single MSP. The MSP allows an identity to be linked to an organization. Note that this is different from the
organization concept defined in an X.509 certificate, which we mentioned above.

The exclusive relationship between an organization and its MSP makes it sensible to name the MSP after the organi-
zation, a convention you’ll find adopted in most policy configurations. For example, organization ORG1 would likely
have an MSP called something like ORG1-MSP. In some cases an organization may require multiple membership
groups — for example, where channels are used to perform very different business functions between organizations.
In these cases it makes sense to have multiple MSPs and name them accordingly, e.g., ORG2-MSP-NATIONAL and
ORG2-MSP-GOVERNMENT, reflecting the different membership roots of trust within ORG2 in the NATIONAL sales
channel compared to the GOVERNMENT regulatory channel.

Organizational Units (OUs) and MSPs

An organization can also be divided into multiple organizational units, each of which has a certain set of responsi-
bilities, also referred to as affiliations. Think of an OU as a department inside an organization. For example,
the ORG1 organization might have both ORG1 . MANUFACTURING and ORG1 .DISTRIBUTION OUs to reflect these
separate lines of business. When a CA issues X.509 certificates, the OU field in the certificate specifies the line of
business to which the identity belongs. A benefit of using OUs like this is that these values can then be used in policy
definitions in order to restrict access or in smart contracts for attribute-based access control. Otherwise, separate MSPs
would need to be created for each organization.

Specifying OUs is optional. If OUs are not used, all of the identities that are part of an MSP — as identified by the
Root CA and Intermediate CA folders — will be considered members of the organization.

4.5. Membership Service Provider (MSP) 45

hyperledger-fabricdocs Documentation, Release master

Node OU Roles and MSPs

Additionally, there is a special kind of OU, sometimes referred to as a Node OU, that can be used to confer a role onto
an identity. These Node OU roles are defined in the $SFABRIC_CFG_PATH/msp/config.yaml file and contain a
list of organizational units whose members are considered to be part of the organization represented by this MSP. This
is particularly useful when you want to restrict the members of an organization to the ones holding an identity (signed
by one of MSP designated CAs) with a specific Node OU role in it. For example, with node OU’s you can implement a
more granular endorsement policy that requires Orgl peers to endorse a transaction, rather than any member of Orgl.

In order to use the Node OU roles, the “identity classification” feature must be enabled for the network. When using
the folder-based MSP structure, this is accomplished by enabling “Node OUs” in the config.yaml file which resides in
the root of the MSP folder:

NodeOUs:
Enable: true
ClientOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: client
PeerOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: peer
AdminOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: admin
OrdererOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: orderer

In the example above, there are 4 possible Node OU ROLES for the MSP:
* client
* peer
e admin
* orderer

This convention allows you to distinguish MSP roles by the OU present in the CommonName attribute of the X509
certificate. The example above says that any certificate issued by cacerts/ca.sampleorg-cert.pem in which OU=client
will identified as a client, OU=peer as a peer, etc. Starting with Fabric v1.4.3, there is also an OU for the orderer and
for admins. The new admins role means that you no longer have to explicitly place certs in the admincerts folder of
the MSP directory. Rather, the admin role present in the user’s signcert qualifies the identity as an admin user.

These Role and OU attributes are assigned to an identity when the Fabric CA or SDK is used to register a user
with the CA. It is the subsequent enrol1 user command that generates the certificates in the users’ /msp folder.

46 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Q a
& FEe e
&
Fabric-CA CLI or SDK O o TES
Register User [affiléon, role] -
Enroll user MSP

/msp

L— cacerts

L— intermediate cacerts
L tiscacerts

L—tls intermediate cacerts
L— keystore (private key)
L— signcerts (public key)

The resulting ROLE and OU attributes are visible inside the X.509 signing certificate located in the /signcerts
folder. The ROLE attribute is identified as hf . Type and refers to an actor’s role within its organization, (specifying,

for example, that an actor is a peer). See the following snippet from a signing certificate shows how the Roles and
OUs are represented in the certificate.

Certificate:
Data
Version: 3 (0x2)
Serial Number:
45:60:41:01 :de:f:5d:b2:94:18:79:91:26:31 :dR:0e:b0: 9b: 6b: BR
Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=New York, O=Hyperledger, OU=Fabric, CN=fabric-ca-server
Validity
Not Before: Nov 20 22:13:00 2019 GMT
Not After : Nov 19 22:18:00 2020 GMT
Subject: OU=peer, OU=0RG1, OU=DISTRIBUTION, CN=userl
L — § P —
ROLE ORGANIZATIONAL UNIT ENROLL ID
(MNode QL)

X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Key Identifier:
17:B0:9B:29:42:F6:44: E0:TD:02:C6:78:96:2D:97:14:TA:DT:FC:CA

X509v3 Authority Key Identifier:
keyid:DC:91:B7:85:A4:37:66:D0:D2:B7:62: A9:3F:59:83:D6:EB:01:E8: 80
1.23456.78.1:
ORGANIZATIONAL UNIT ENROLL ID ROLE (Node OU)

o o 1

{"attrs": {"hf Affiliation":"ORG1.DISTRIBUTION","hf EnrollmentID": "user 1","hf Type":"peer" } }

Note: For Channel MSPs, just because an actor has the role of an administrator it doesn’t mean that
they can administer particular resources. The actual power a given identity has with respect to administer-
ing the system is determined by the policies that manage system resources. For example, a channel policy
might specify that ORG1-MANUFACTURING administrators, meaning identities with a role of admin and a

4.5. Membership Service Provider (MSP) 47

hyperledger-fabricdocs Documentation, Release master

Node OU of ORG1-MANUFACTURING, have the rights to add new organizations to the channel, whereas the
ORG1-DISTRIBUTION administrators have no such rights.

Finally, OUs could be used by different organizations to distinguish each other. But in such cases, the different
organizations have to use the same Root CAs and Intermediate CAs for their chain of trust, and assign the OU field
to identify members of each organization. When every organization has the same CA or chain of trust, this makes the
system more centralized than what might be desirable and therefore deserves careful consideration on a blockchain
network.

4.5.5 MSP Structure

Let’s explore the MSP elements that render the functionality we’ve described so far.

A local MSP folder contains the following sub-folders:

msp .

— config.yaml ~ node OU configuration
—— .. cacerts

[m‘crt . . - - . -

signing chain for organization-level certificates

I intermediatecerts signs

L cacnt _
—— .. admincerts* organization administrator(s) certificate(s)

[*deprecated in Fabric v1.4.3 and higher)
admin.crt

o keystore (private key)
I— signer.key —

——— . signcerts jpusickey

I— signer.crt

—— . tlscacerts

pairs with

I— tlsca.<org-domain>-cert.pem 7

—— . tlsintermediatecerts — signing chain for network TLS node certificates

I— tisca.<org-domain>.pem

.. operationscerts ~ certs for Fabric operations metrics

The figure above shows the subfolders in a local MSP on the file system

* config.yaml: Used to configure the identity classification feature in Fabric by enabling “Node OUs” and defining

the accepted roles.

* cacerts: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by the organization

represented by this MSP. There must be at least one Root CA certificate in this MSP folder.

This is the most important folder because it identifies the CAs from which all other certificates must be derived
to be considered members of the corresponding organization to form the chain of trust.

intermediatecerts: This folder contains a list of X.509 certificates of the Intermediate CAs trusted by this
organization. Each certificate must be signed by one of the Root CAs in the MSP or by any Intermediate CA
whose issuing CA chain ultimately leads back to a trusted Root CA.

An intermediate CA may represent a different subdivision of the organization (like ORG1-MANUFACTURING
and ORG1-DISTRIBUTION do for ORG1), or the organization itself (as may be the case if a commercial CA
is leveraged for the organization’s identity management). In the latter case intermediate CAs can be used to rep-
resent organization subdivisions. Here you may find more information on best practices for MSP configuration.

48

Chapter 4. Key Concepts

../msp.html

hyperledger-fabricdocs Documentation, Release master

Notice, that it is possible to have a functioning network that does not have an Intermediate CA, in which case
this folder would be empty.

Like the Root CA folder, this folder defines the CAs from which certificates must be issued to be considered
members of the organization.

* admincerts (Deprecated from Fabric v1.4.3 and higher): This folder contains a list of identities that define
the actors who have the role of administrators for this organization. In general, there should be one or more
X.509 certificates in this list.

Note: Prior to Fabric v1.4.3, admins were defined by explicitly putting certs in the admincerts folder in
the local MSP directory of your peer. With Fabric v1.4.3 or higher, certificates in this folder are no longer
required. Instead, it is recommended that when the user is registered with the CA, that the admin role is used
to designate the node administrator. Then, the identity is recognized as an admin by the Node OU role value
in their signcert. As a reminder, in order to leverage the admin role, the “identity classification” feature must be
enabled in the config.yaml above by setting “Node OUs” to Enable: true. We’ll explore this more later.

And as a reminder, for Channel MSPs, just because an actor has the role of an administrator it doesn’t mean that
they can administer particular resources. The actual power a given identity has with respect to administering
the system is determined by the policies that manage system resources. For example, a channel policy might
specify that ORG1-MANUFACTURING administrators have the rights to add new organizations to the channel,
whereas the ORG1-DISTRIBUTION administrators have no such rights.

* keystore: (private Key) This folder is defined for the local MSP of a peer or orderer node (or in a client’s local
MSP), and contains the node’s private key. This key is used to sign data — for example to sign a transaction
proposal response, as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one private key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

The channel MSP configuration does not include this folder, because channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

Note: If you are using a Hardware Security Module(HSM) for key management, this folder is empty because
the private key is generated by and stored in the HSM.

* signcert: For a peer or orderer node (or in a client’s local MSP) this folder contains the node’s certificate issued
by CA. The certificate represents the node’s identity, and this certificate’s corresponding private key can be
used to generate signatures which may be verified by anyone with a copy of this certificate.

This folder is mandatory for local MSPs, and must contain exactly one public key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

Configuration of a channel MSP does not include this folder, as channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

* tlscacerts: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by this organiza-
tion for secure communications between nodes using TLS. An example of a TLS communication would be
when a peer needs to connect to an orderer so that it can receive ledger updates.

MSP TLS information relates to the nodes inside the network — the peers and the orderers, in other words,
rather than the applications and administrations that consume the network.

There must be at least one TLS Root CA certificate in this folder. For more information about TLS, see Securing
Communication with Transport Layer Security (TLS).

* tlsintermediatecacerts: This folder contains a list intermediate CA certificates CAs trusted by the organization
represented by this MSP for secure communications between nodes using TLS. This folder is specifically use-
ful when commercial CAs are used for TLS certificates of an organization. Similar to membership intermediate
CAs, specifying intermediate TLS CAs is optional.

4.5. Membership Service Provider (MSP) 49

../hsm.html
../enable_tls.html
../enable_tls.html

hyperledger-fabricdocs Documentation, Release master

* operationscerts: This folder contains the certificates required to communicate with the Fabric Operations Ser-
vice APL

A channel MSP includes the following additional folder:

* Revoked Certificates: If the identity of an actor has been revoked, identifying information about the identity
— not the identity itself — is held in this folder. For X.509-based identities, these identifiers are pairs of strings
known as Subject Key Identifier (SKI) and Authority Access Identifier (AKI), and are checked whenever the
certificate is being used to make sure the certificate has not been revoked.

This list is conceptually the same as a CA’s Certificate Revocation List (CRL), but it also relates to revocation
of membership from the organization. As a result, the administrator of a channel MSP can quickly revoke an
actor or node from an organization by advertising the updated CRL of the CA. This “list of lists” is optional. It
will only become populated as certificates are revoked.

If you’ve read this doc as well as our doc on Identity, you should now have a pretty good grasp of how identities and
MSPs work in Hyperledger Fabric. You’ve seen how a PKI and MSPs are used to identify the actors collaborating in
a blockchain network. You’ve learned how certificates, public/private keys, and roots of trust work, in addition to how
MSPs are physically and logically structured.

4.6 Policies

Audience: Architects, application and smart contract developers, administrators
In this topic, we’ll cover:

* What is a policy

* Why are policies needed

* How are policies implemented

* How do you write a policy in Fabric

e Fabric chaincode lifecycle

* Overriding policy definitions

Note: this topic describes a network that does not use a “system channel”, a channel that the ordering service is
bootstrapped with and the ordering service exclusively controls. Since the release of v2.3, using system channel is now
considered the legacy process as compared to the process to Create a channel without a system channel. For a version
of this topic that includes information about the system channel, check out Policies from the v2.2 documentation.

4.6.1 What is a policy

At its most basic level, a policy is a set of rules that define the structure for how decisions are made and specific
outcomes are reached. To that end, policies typically describe a who and a what, such as the access or rights that an
individual has over an asset. We can see that policies are used throughout our daily lives to protect assets of value to
us, from car rentals, health, our homes, and many more.

For example, an insurance policy defines the conditions, terms, limits, and expiration under which an insurance payout
will be made. The policy is agreed to by the policy holder and the insurance company, and defines the rights and
responsibilities of each party.

Whereas an insurance policy is put in place for risk management, in Hyperledger Fabric, policies are the mechanism
for infrastructure management. Fabric policies represent how members come to agreement on accepting or rejecting
changes to the network, a channel, or a smart contract. Policies are agreed to by the channel members when the
channel is originally configured, but they can also be modified as the channel evolves. For example, they describe the

50 Chapter 4. Key Concepts

../operations_service.html
../operations_service.html
../identity/identity.html
../create_channel/create_channel_participation.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/policies/policies.html

hyperledger-fabricdocs Documentation, Release master

criteria for adding or removing members from a channel, change how blocks are formed, or specify the number of
organizations required to endorse a smart contract. All of these actions are described by a policy which defines who
can perform the action. Simply put, everything you want to do on a Fabric network is controlled by a policy.

4.6.2 Why are policies needed

Policies are one of the things that make Hyperledger Fabric different from other blockchains like Ethereum or Bitcoin.
In those systems, transactions can be generated and validated by any node in the network. The policies that govern the
network are fixed at any point in time and can only be changed using the same process that governs the code. Because
Fabric is a permissioned blockchain whose users are recognized by the underlying infrastructure, those users have
the ability to decide on the governance of the network before it is launched, and change the governance of a running
network.

Policies allow members to decide which organizations can access or update a Fabric network, and provide the mech-
anism to enforce those decisions. Policies contain the lists of organizations that have access to a given resource, such
as a user or system chaincode. They also specify how many organizations need to agree on a proposal to update a
resource, such as a channel or smart contracts. Once they are written, policies evaluate the collection of signatures
attached to transactions and proposals and validate if the signatures fulfill the governance agreed to by the network.

4.6.3 How are policies implemented

Policies are defined within the relevant administrative domain of a particular action defined by the policy. For example,
the policy for adding a peer organization to a channel is defined within the administrative domain of the peer organi-
zations (known as the Application group). Similarly, adding ordering nodes in the consenter set of the channel is
controlled by a policy inside the Orderer group. Actions that cross both the peer and orderer organizational domains
are contained in the Channel group.

Typically, these policies default to the “majority of admins” of the group they fall under (a majority of peer organi-
zation admins for example, or in the case of Channel policies, a majority of both peer organizations and orderer
organizations), though they can be specified to any rule a user wishes to define. Check out Signature policies for more
information.

Access control lists (ACLs)

Network administrators will be especially interested in the Fabric use of ACLs, which provide the ability to configure
access to resources by associating those resources with existing policies. These “resources” could be functions on sys-
tem chaincode (e.g., “GetBlockByNumber” on the “qscc” system chaincode) or other resources (e.g.,who can receive
Block events). ACLs refer to policies defined in an application channel configuration and extends them to control ad-
ditional resources. The default set of Fabric ACLs is visible in the configtx.yaml file under the Application:
&ApplicationDefaults section but they can and should be overridden in a production environment. The list of
resources named in configtx.yaml is the complete set of all internal resources currently defined by Fabric.

In that file, ACLs are expressed using the following format:

ACL policy for chaincode to chaincode invocation
peer/ChaincodeToChaincode: /Channel/Application/Writers

Where peer/ChaincodeToChaincode represents the resource being secured and /Channel/
Application/Writers refers to the policy which must be satisfied for the associated transaction to be
considered valid.

For a deeper dive into ACLS, refer to the topic in the Operations Guide on ACLs.

4.6. Policies 51

../access_control.html

hyperledger-fabricdocs Documentation, Release master

Smart contract endorsement policies

Every smart contract inside a chaincode package has an endorsement policy that specifies how many peers belonging
to different channel members need to execute and validate a transaction against a given smart contract in order for the
transaction to be considered valid. Hence, the endorsement policies define the organizations (through their peers) who
must “endorse” (i.e., approve of) the execution of a proposal.

Modification policies

There is one last type of policy that is crucial to how policies work in Fabric, the Modification policy. Modifi-
cation policies specify the group of identities required to sign (approve) any configuration update. It is the policy that
defines how the policy is updated. Thus, each channel configuration element includes a reference to a policy which
governs its modification.

4.6.4 How do you write a policy in Fabric

If you want to change anything in Fabric, the policy associated with the resource describes who needs to approve it,
either with an explicit sign off from individuals, or an implicit sign off by a group. In the insurance domain, an explicit
sign off could be a single member of the homeowners insurance agents group. And an implicit sign off would be
analogous to requiring approval from a majority of the managerial members of the homeowners insurance group. This
is particularly useful because the members of that group can change over time without requiring that the policy be
updated. In Hyperledger Fabric, explicit sign offs in policies are expressed using the Signature syntax and implicit
sign offs use the ImplicitMeta syntax.

Signature policies

Signature policies define specific types of users who must sign in order for a policy to be satisfied such as
OR('Orgl.peer', 'Org2.peer'). These policies are considered the most versatile because they allow for
the construction of extremely specific rules like: “An admin of org A and 2 other admins, or 5 of 6 organization
admins”. The syntax supports arbitrary combinations of AND, OR and NOut Of. For example, a policy can be easily
expressed by using AND ('Orgl.member', 'Org2.member') which means that a signature from at least one
member in Orgl AND one member in Org2 is required for the policy to be satisfied.

ImplicitMeta policies

ImplicitMeta policies are only valid in the context of channel configuration which is based on a tiered hierarchy
of policies in a configuration tree. ImplicitMeta policies aggregate the result of policies deeper in the configuration
tree that are ultimately defined by Signature policies. They are Implicit because they are constructed implicitly
based on the current organizations in the channel configuration, and they are Meta because their evaluation is not
against specific MSP principals, but rather against other sub-policies below them in the configuration tree.

The following diagram illustrates the tiered policy structure for an application channel and shows how the
ImplicitMeta channel configuration admins policy, named /Channel/Admins, is resolved when the sub-
policies named Admins below it in the configuration hierarchy are satisfied where each check mark represents that
the conditions of the sub-policy were satisfied.

52 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Application Channel

Channel/Admins

MAJORITY sub policy: “Admins”

Channel/Orderer/Admins

Channel/Application/Admins

n=0 (ANY) MAJORITY sub policy: “Admins
|] |
v 2
Channel/Consortium/SampleConsortium/Org1MSP/Admihs <l Channel/Consortium/SampleConsortium/Org2MSP/Admihs 4 |
n=1 Role = "ADMIN" member of Org1MSP Type=1 n=1 Role = "ADMIN" member of Org2MSP Type=1 |
&
Channel/Orderer [OrdererOrg fAdmins Lo

Type 1 = Signature
n=1 Role = "ADMIN" member of OrdererMSP Type=1

Type 3 = ImplicitMeta

In order for the Channel/Admins policy to be satisfied, every sub-policy under it in the configuration hierarchy must
be satisfied.

As you can see in the diagram above, ImplicitMeta policies, Type = 3, use a different syntax,
"<ANY |ALL |MAJORITY> <SubPolicyName>", for example:

"MAJORITY sub policy: Admins®

The diagram shows a sub-policy Admins, which refers to all the Admins policy below it in the configuration tree.
You can create your own sub-policies and name them whatever you want and then define them in each of your organi-
zations.

As mentioned above, a key benefit of an ImplicitMeta policy such as MAJORITY Admins is that when you add
a new admin organization to the channel, you do not have to update the channel policy. Therefore ImplicitMeta
policies are considered to be more flexible as organizations are added. Recall that ImplicitMeta policies ultimately
resolve the Signature sub-policies underneath them in the configuration tree as the diagram shows.

You can also define an application level implicit policy to operate across organizations, in a channel for example,
and either require that ANY of them are satisfied, that ALL are satisfied, or that a MAJORITY are satisfied. This
format lends itself to much better, more natural defaults, so that each organization can decide what it means for a valid
endorsement.

Further granularity and control can be achieved if you include NodeOUs in your organization definition. Organization
Units (OUs) are defined in the Fabric CA client configuration file and can be associated with an identity when it
is created. In Fabric, NodeOUs provide a way to classify identities in a digital certificate hierarchy. For instance,
an organization having specific NodeOUs enabled could require that a ‘peer’ sign for it to be a valid endorsement,
whereas an organization without any might simply require that any member can sign.

4.6.5 An example: channel configuration policy

Understanding policies begins with examining the configtx.yaml where the channel policies are defined. We can
use the configtx.yaml file in the Fabric test network to see examples of both policy syntax types. We are going
to examine the configtx.yaml file used by the fabric-samples/test-network sample.

The first section of the file defines the organizations that will be members of the channel. Inside each organization def-
inition are the default policies for that organization, Readers, Writers, Admins, and Endorsement, although

4.6. Policies 53

../msp.html#organizational-units
https://github.com/hyperledger/fabric-samples/blob/master/test-network/configtx/configtx.yaml

hyperledger-fabricdocs Documentation, Release master

you can name your policies anything you want. Each policy has a Type which describes how the policy is expressed
(Signatureor ImplicitMeta)and aRule.

The test network example below shows the Orgl organization definition in the channel, where the policy Type is
Signature and the Endorsement : policy rule is defined as "OR ('OrglMSP.peer ') ". This policy specifies
that a peer that is a member of Org1MSP is required to sign. It is these signature policies that become the sub-policies
that the ImplicitMeta policies point to.

Click here to see an example of an organization defined with signature policies

- &0rgl
DefaultOrg defines the organization which is used in the sampleconfig
of the fabric.git development environment
Name: OrglMSP

ID to load the MSP definition as
ID: OrglMSP

MSPDir: ../organizations/peerOrganizations/orgl.example.com/msp
Policies defines the set of policies at this level of the config tree

For organization policies, their canonical path is usually
/Channel/<Application|Orderer>/<OrgName>/<PolicyName>

Policies:
Readers:
Type: Signature
Rule: "OR('OrglMSP.admin', 'OrglMSP.peer', 'OrglMSP.client')"
Writers:

Type: Signature

Rule: "OR('OrglMSP.admin', 'OrglMSP.client')"
Admins:

Type: Signature

Rule: "OR('OrglMSP.admin')"
Endorsement:

Type: Signature

Rule: "OR('OrglMSP.peer')"

The next example shows the ImplicitMeta policy type used in the Application section of the configtx.
yaml. These set of policies lie on the /Channel/Application/ path. If you use the default set of Fabric
ACLs, these policies define the behavior of many important features of application channels, such as who can query
the channel ledger, invoke a chaincode, or update a channel config. These policies point to the sub-policies defined
for each organization. The Orgl defined in the section above contains Reader, Writer, and Admin sub-policies
that are evaluated by the Reader, Writer, and Admin ImplicitMeta policies in the Application section.
Because the test network is built with the default policies, you can use the example Orgl to query the channel ledger,
invoke a chaincode, and approve channel updates for any test network channel that you create.

Click here to see an example of ImplicitMeta policies

AA#HAAFAAFFAAAAAAFAAAFFAAFHAAFAAAFRAAFAAFFEAFFRAFFAAAFAAAFAA A AR AR FRAA A AR RS

#

SECTION: Application

#

- This section defines the values to encode into a config transaction or
genesis block for application related parameters

#

#HE#AF A HAF AR A AR F AR F AR AR AR F A F A AR AR AR AR AR A A A
Application: &ApplicationDefaults

(continues on next page)

54 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Organizations 1is the list of orgs which are defined as participants on
the application side of the network
Organizations:

Policies defines the set of policies at this level of the config tree
For Application policies, their canonical path 1is
/Channel/Application/<PolicyName>
Policies:
Readers:
Type: ImplicitMeta
Rule: "ANY Readers"
Writers:
Type: ImplicitMeta
Rule: "ANY Writers"
Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"
LifecycleEndorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"
Endorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"

4.6.6 Fabric chaincode lifecycle

In the Fabric 2.0 release, a new chaincode lifecycle process was introduced, whereby a more democratic process is
used to govern chaincode on the network. The new process allows multiple organizations to vote on how a chaincode
will be operated before it can be used on a channel. This is significant because it is the combination of this new
lifecycle process and the policies that are specified during that process that dictate the security across the network.
More details on the flow are available in the Fabric chaincode lifecycle concept topic, but for purposes of this topic
you should understand how policies are used in this flow. The new flow includes two steps where policies are specified:
when chaincode is approved by organization members, and when it is committed to the channel.

The Application section of the configtx.yaml file includes the default chaincode lifecycle endorsement pol-
icy. In a production environment you would customize this definition for your own use case.

FHEARFRAAFRARFHAFFAAFHAAFEAAFRAAFEAAFRAFF AR FHAFF AR HAAFFAA AR A AR F A EAAS

#

SECTION: Application

#

— This section defines the values to encode into a config transaction or
genesis block for application related parameters

#

AHAFHAFAAHAFAAEAFAFHAFAFHAFAF A HAF AR F AR FA AR FAF A FAF AR AR F AR AR A
Application: &ApplicationDefaults

Organizations is the list of orgs which are defined as participants on
the application side of the network
Organizations:

Policies defines the set of policies at this level of the config tree
For Application policies, their canonical path is

/Channel/Application/<PolicyName>

Policies:

(continues on next page)

4.6. Policies 55

../chaincode_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Readers:

Type: ImplicitMeta

Rule: "ANY Readers"
Writers:

Type: ImplicitMeta

Rule: "ANY Writers"
Admins:

Type: ImplicitMeta

Rule: "MAJORITY Admins"
LifecycleEndorsement:

Type: ImplicitMeta

Rule: "MAJORITY Endorsement"
Endorsement:

Type: ImplicitMeta

Rule: "MAJORITY Endorsement"

e The LifecycleEndorsement policy governs who needs to approve a chaincode definition.

* The Endorsement policy is the default endorsement policy for a chaincode. More on this below.

4.6.7 Chaincode endorsement policies

The endorsement policy is specified for a chaincode when it is approved and committed to the channel using the
Fabric chaincode lifecycle (that is, one endorsement policy covers all of the state associated with a chaincode). The
endorsement policy can be specified either by reference to an endorsement policy defined in the channel configuration
or by explicitly specifying a Signature policy.

If an endorsement policy is not explicitly specified during the approval step, the default Endorsement policy
"MAJORITY Endorsement" is used which means that a majority of the peers belonging to the different channel
members (organizations) need to execute and validate a transaction against the chaincode in order for the transaction
to be considered valid. This default policy allows organizations that join the channel to become automatically added
to the chaincode endorsement policy. If you don’t want to use the default endorsement policy, use the Signature pol-
icy format to specify a more complex endorsement policy (such as requiring that a chaincode be endorsed by one
organization, and then one of the other organizations on the channel).

Signature policies also allow you to include principals which are simply a way of matching an identity to a role.
Principals are just like user IDs or group IDs, but they are more versatile because they can include a wide range of
properties of an actor’s identity, such as the actor’s organization, organizational unit, role or even the actor’s specific
identity. When we talk about principals, they are the properties which determine their permissions. Principals are
described as 'MSP .ROLE ', where MSP represents the required MSP ID (the organization), and ROLE represents one
of the four accepted roles: Member, Admin, Client, and Peer. A role is associated to an identity when a user enrolls
with a CA. You can customize the list of roles available on your Fabric CA.

Some examples of valid principals are:
¢ ‘Org0.Admin’: an administrator of the Org0 MSP
* ‘Orgl.Member’: a member of the Orgl MSP
* ‘Orgl.Client’: a client of the Orgl MSP
e ‘Orgl.Peer’: a peer of the Orgl MSP
¢ ‘OrdererOrg.Orderer’: an orderer in the OrdererOrg MSP

There are cases where it may be necessary for a particular state (a particular key-value pair, in other words) to have a
different endorsement policy. This state-based endorsement allows the default chaincode-level endorsement policies
to be overridden by a different policy for the specified keys.

56 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

For a deeper dive on how to write an endorsement policy refer to the topic on Endorsement policies in the Operations
Guide.

Note: Policies work differently depending on which version of Fabric you are using:

¢ In Fabric releases prior to 2.0, chaincode endorsement policies can be updated during chaincode instantiation
or by using the chaincode lifecycle commands. If not specified at instantiation time, the endorsement policy
defaults to “any member of the organizations in the channel”. For example, a channel with “Orgl” and “Org2”
would have a default endorsement policy of “OR(‘Orgl.member’, ‘Org2.member’)”.

« Starting with Fabric 2.0, Fabric introduced a new chaincode lifecycle process that allows multiple organizations
to agree on how a chaincode will be operated before it can be used on a channel. The new process requires
that organizations agree to the parameters that define a chaincode, such as name, version, and the chaincode
endorsement policy.

4.6.8 Overriding policy definitions

Hyperledger Fabric includes default policies which are useful for getting started, developing, and testing your
blockchain, but they are meant to be customized in a production environment. You should be aware of the default
policies in the configtx.yaml file. Channel configuration policies can be extended with arbitrary verbs, beyond
the default Readers, Writers, Adminsinconfigtx.yaml.

For more information on overriding policy definitions when creating a channel, check out Channel policies and Creat-
ing a channel without a system channel.

For information about how to update a channel, check out Updating a channel configuration for more information.

4.7 Peers

A blockchain network is comprised primarily of a set of peer nodes (or, simply, peers). Peers are a fundamental
element of the network because they host ledgers and smart contracts. Recall that a ledger immutably records all the
transactions generated by smart contracts (which in Hyperledger Fabric are contained in a chaincode, more on this
later). Smart contracts and ledgers are used to encapsulate the shared processes and shared information in a network,
respectively. These aspects of a peer make them a good starting point to understand a Fabric network.

Other elements of the blockchain network are of course important: ledgers and smart contracts, orderers, policies,
channels, applications, organizations, identities, and membership, and you can read more about them in their own
dedicated sections. This section focusses on peers, and their relationship to those other elements in a Fabric network.

4.7. Peers 57

../endorsement-policies.html
../create_channel/channel_policies.html
../create_channel/create_channel_participation.html
../create_channel/create_channel_participation.html
../config_update.html#updating-a-channel-configuration

hyperledger-fabricdocs Documentation, Release master

@ D

Blockchain
network

Peer node

Smart contract
(aka chaincode)

L1

P3

10800

Ledger

N v

A blockchain network is comprised of peer nodes, each of which can hold copies of ledgers and copies of smart
contracts. In this example, the network N consists of peers P1, P2 and P3, each of which maintain their own instance
of the distributed ledger L1. P1, P2 and P3 use the same chaincode, S1, to access their copy of that distributed ledger.

Peers can be created, started, stopped, reconfigured, and even deleted. They expose a set of APIs that enable admin-
istrators and applications to interact with the services that they provide. We’ll learn more about these services in this
section.

4.7.1 A word on terminology

Fabric implements smart contracts with a technology concept it calls chaincode — simply a piece of code that
accesses the ledger, written in one of the supported programming languages. In this topic, we’ll usually use the term
chaincode, but feel free to read it as smart contract if you’re more used to that term. It’s the same thing! If you want
to learn more about chaincode and smart contracts, check out our documentation on smart contracts and chaincode.

4.7.2 Ledgers and Chaincode

Let’s look at a peer in a little more detail. We can see that it’s the peer that hosts both the ledger and chaincode.
More accurately, the peer actually hosts instances of the ledger, and instances of chaincode. Note that this provides a
deliberate redundancy in a Fabric network — it avoids single points of failure. We’ll learn more about the distributed
and decentralized nature of a blockchain network later in this section.

58 Chapter 4. Key Concepts

../smartcontract/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

A peer hosts instances of ledgers and instances of chaincodes. In this example, P1 hosts an instance of ledger L1 and
an instance of chaincode S1. There can be many ledgers and chaincodes hosted on an individual peer.

Because a peer is a host for ledgers and chaincodes, applications and administrators must interact with a peer if they
want to access these resources. That’s why peers are considered the most fundamental building blocks of a Fabric
network. When a peer is first created, it has neither ledgers nor chaincodes. We’ll see later how ledgers get created,
and how chaincodes get installed, on peers.

Multiple Ledgers

A peer is able to host more than one ledger, which is helpful because it allows for a flexible system design. The
simplest configuration is for a peer to manage a single ledger, but it’s absolutely appropriate for a peer to host two or
more ledgers when required.

S2

A peer hosting multiple ledgers. Peers host one or more ledgers, and each ledger has zero or more chaincodes that
apply to them. In this example, we can see that the peer P1 hosts ledgers L1 and L2. Ledger L1 is accessed using
chaincode S1. Ledger L2 on the other hand can be accessed using chaincodes S1 and S2.

4.7. Peers 59

hyperledger-fabricdocs Documentation, Release master

Although it is perfectly possible for a peer to host a ledger instance without hosting any chaincodes which access that
ledger, it’s rare that peers are configured this way. The vast majority of peers will have at least one chaincode installed
on it which can query or update the peer’s ledger instances. It’s worth mentioning in passing that, whether or not users
have installed chaincodes for use by external applications, peers also have special system chaincodes that are always
present. These are not discussed in detail in this topic.

Multiple Chaincodes

There isn’t a fixed relationship between the number of ledgers a peer has and the number of chaincodes that can access
that ledger. A peer might have many chaincodes and many ledgers available to it.

S1 S3

An example of a peer hosting multiple chaincodes. Each ledger can have many chaincodes which access it. In this
example, we can see that peer P1 hosts ledgers L1 and L2, where LI is accessed by chaincodes S1 and S2, and L2 is
accessed by S1 and S3. We can see that S1 can access both L1 and L2.

We’ll see a little later why the concept of channels in Fabric is important when hosting multiple ledgers or multiple
chaincodes on a peer.

4.7.3 Applications and Peers

We’re now going to show how applications interact with peers to access the ledger. Ledger-query interactions involve
a simple three-step dialogue between an application and a peer; ledger-update interactions are a little more involved,
and require two extra steps. We’ve simplified these steps a little to help you get started with Fabric, but don’t worry
— what’s most important to understand is the difference in application-peer interactions for ledger-query compared to
ledger-update transaction styles.

Applications always connect to peers when they need to access ledgers and chaincodes. The Fabric Software De-
velopment Kit (SDK) makes this easy for programmers — its APIs enable applications to connect to peers, invoke
chaincodes to generate transactions, submit transactions to the network that will get ordered, validated and committed
to the distributed ledger, and receive events when this process is complete.

Through a peer connection, applications can execute chaincodes to query or update a ledger. The result of a ledger
query transaction is returned immediately, whereas ledger updates involve a more complex interaction between appli-
cations, peers and orderers. Let’s investigate this in a little more detail.

60 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Blockehain
Network
/ 2.1 peer invokes chaincode with proposal \
E] Application
1. connect to peer
2. invoke chaincode (proposal) 2.2 chaincode generates Peer
A query or update
3. proposal response proposal response
| %
H 5. ledger update event Chaincode
| Leeeo | 4.2 peer updates ledger
i using transaction blocks
4. request that transaction is ordered :4 1 Transactions sent - Ledger
to peers in blocks y
. Orderer

Peers, in conjunction with orderers, ensure that the ledger is kept up-to-date on every peer. In this example, application
A connects to P1 and invokes chaincode S1 to query or update the ledger L1. PI invokes S1 to generate a proposal
response that contains a query result or a proposed ledger update. Application A receives the proposal response and,
for queries, the process is now complete. For updates, A builds a transaction from all of the responses, which it sends
to Ol for ordering. Ol collects transactions from across the network into blocks, and distributes these to all peers,
including PI1. PI validates the transaction before committing to L1. Once LI is updated, Pl generates an event,
received by A, to signify completion.

A peer can return the results of a query to an application immediately since all of the information required to satisfy the
query is in the peer’s local copy of the ledger. Peers never consult with other peers in order to respond to a query from
an application. Applications can, however, connect to one or more peers to issue a query; for example, to corroborate
a result between multiple peers, or retrieve a more up-to-date result from a different peer if there’s a suspicion that
information might be out of date. In the diagram, you can see that ledger query is a simple three-step process.

An update transaction starts in the same way as a query transaction, but has two extra steps. Although ledger-updating
applications also connect to peers to invoke a chaincode, unlike with ledger-querying applications, an individual peer
cannot perform a ledger update at this time, because other peers must first agree to the change — a process called
consensus. Therefore, peers return to the application a proposed update — one that this peer would apply subject to
other peers’ prior agreement. The first extra step — step four — requires that applications send an appropriate set of
matching proposed updates to the entire network of peers as a transaction for commitment to their respective ledgers.
This is achieved by the application by using an orderer to package transactions into blocks, and distributing them to
the entire network of peers, where they can be verified before being applied to each peer’s local copy of the ledger. As
this whole ordering processing takes some time to complete (seconds), the application is notified asynchronously, as
shown in step five.

Later in this section, you’ll learn more about the detailed nature of this ordering process — and for a really detailed
look at this process see the Transaction Flow topic.

4.7.4 Peers and Channels

Although this section is about peers rather than channels, it’s worth spending a little time understanding how peers
interact with each other, and with applications, via channels — a mechanism by which a set of components within a
blockchain network can communicate and transact privately.

These components are typically peer nodes, orderer nodes and applications and, by joining a channel, they agree to
collaborate to collectively share and manage identical copies of the ledger associated with that channel. Conceptually,
you can think of channels as being similar to groups of friends (though the members of a channel certainly don’t need

4.7. Peers 61

../txflow.html

hyperledger-fabricdocs Documentation, Release master

to be friends!). A person might have several groups of friends, with each group having activities they do together.
These groups might be totally separate (a group of work friends as compared to a group of hobby friends), or there
can be some crossover between them. Nevertheless, each group is its own entity, with “rules” of a kind.

Blockchain
/ \ @ Blockch: - Ledger
P1 @ Channel Application
L1
P2 PA Principal PA (e.g. A, P1)
|.1 n Peer ? communicates via
channel C.
p— C i
k y E] Chaincode

Channels allow a specific set of peers and applications to communicate with each other within a blockchain network.
In this example, application A can communicate directly with peers P1 and P2 using channel C. You can think of the
channel as a pathway for communications between particular applications and peers. (For simplicity, orderers are
not shown in this diagram, but must be present in a functioning network.)

We see that channels don’t exist in the same way that peers do — it’s more appropriate to think of a channel as a
logical structure that is formed by a collection of physical peers. It is vital to understand this point — peers provide
the control point for access to, and management of, channels.

4.7.5 Peers and Organizations

Now that you understand peers and their relationship to ledgers, chaincodes and channels, you’ll be able to see how
multiple organizations come together to form a blockchain network.

Blockchain networks are administered by a collection of organizations rather than a single organization. Peers are
central to how this kind of distributed network is built because they are owned by — and are the connection points to

the network for — these organizations.

Blockchain
Ledger
Network
-~ .
Channel E] Application
/
/
]
i
! Principal PA (e.g. A1, P5)
i Peer ?’ communicates via
! channel C.
1
\
A
\
\
A Organization

) Organization R owns application Al
/| and peers P1, P2.

62 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Peers in a blockchain network with multiple organizations. The blockchain network is built up from the peers owned
and contributed by the different organizations. In this example, we see four organizations contributing eight peers to
form a network. The channel C connects five of these peers in the network N — P1, P3, P5, P7 and P8. The other
peers owned by these organizations have not been joined to this channel, but are typically joined to at least one other
channel. Applications that have been developed by a particular organization will connect to their own organization’s
peers as well as those of different organizations. Again, for simplicity, an orderer node is not shown in this diagram.

It’s really important that you can see what’s happening in the formation of a blockchain network. The network is
both formed and managed by the multiple organizations who contribute resources to it. Peers are the resources that
we’re discussing in this topic, but the resources an organization provides are more than just peers. There’s a principle
at work here — the network literally does not exist without organizations contributing their individual resources
to the collective network. Moreover, the network grows and shrinks with the resources that are provided by these
collaborating organizations.

You can see that (other than the ordering service) there are no centralized resources — in the example above, the
network, N, would not exist if the organizations did not contribute their peers. This reflects the fact that the network
does not exist in any meaningful sense unless and until organizations contribute the resources that form it. Moreover,
the network does not depend on any individual organization — it will continue to exist as long as one organization
remains, no matter which other organizations may come and go. This is at the heart of what it means for a network to
be decentralized.

Applications in different organizations, as in the example above, may or may not be the same. That’s because it’s
entirely up to an organization as to how its applications process their peers’ copies of the ledger. This means that both
application and presentation logic may vary from organization to organization even though their respective peers host
exactly the same ledger data.

Applications connect either to peers in their organization, or peers in another organization, depending on the nature of
the ledger interaction that’s required. For ledger-query interactions, applications typically connect to their own orga-
nization’s peers. For ledger-update interactions, we’ll see later why applications need to connect to peers representing
every organization that is required to endorse the ledger update.

4.7.6 Peers and ldentity

Now that you’ve seen how peers from different organizations come together to form a blockchain network, it’s worth
spending a few moments understanding how peers get assigned to organizations by their administrators.

Peers have an identity assigned to them via a digital certificate from a particular certificate authority. You can read
lots more about how X.509 digital certificates work elsewhere in this guide but, for now, think of a digital certificate
as being like an ID card that provides lots of verifiable information about a peer. Each and every peer in the network
is assigned a digital certificate by an administrator from its owning organization.

4.7. Peers 63

hyperledger-fabricdocs Documentation, Release master

Blockchain Peer
Network
® Channel Organization
Identity Principal PA (e.g. P1,P4)
T communicates via
Channel channel C.
CP policy
Certificate @ Membership Service
Authority Provider
~— i S) 2 N - N
H ,’ \ | Organization R owns application Al
MSPs CP@ N J | and peers P1, P2.
CA1 ORG1.MSP N, JR4
\~~__—’f
ORG2.MSP { CA2

0

Channel
N T Cha-nnel C cp@ polICYCP
subject to contains

cp MSsP2

policy CP. MSPs: MSP1
and MSP2.

0)

MSP1 selects the Certificate
Authority CA1 to provide certificates
for it.

Principal P
has identity D

a

When a peer connects to a channel, its digital certificate identifies its owning organization via a channel MSP. In this
example, P1 and P2 have identities issued by CAl. Channel C determines from a policy in its channel configuration
that identities from CAl should be associated with Orgl using ORGI1.MSP. Similarly, P3 and P4 are identified by
ORG2.MSP as being part of Org2.

Whenever a peer connects using a channel to a blockchain network, a policy in the channel configuration uses the
peer’s identity to determine its rights. The mapping of identity to organization is provided by a component called
a Membership Service Provider (MSP) — it determines how a peer gets assigned to a specific role in a particular
organization and accordingly gains appropriate access to blockchain resources. Moreover, a peer can be owned only
by a single organization, and is therefore associated with a single MSP. We’ll learn more about peer access control
later in this section, and there’s an entire section on MSPs and access control policies elsewhere in this guide. But
for now, think of an MSP as providing linkage between an individual identity and a particular organizational role in a
blockchain network.

To digress for a moment, peers as well as everything that interacts with a blockchain network acquire their organi-
zational identity from their digital certificate and an MSP. Peers, applications, end users, administrators and orderers
must have an identity and an associated MSP if they want to interact with a blockchain network. We give a name
to every entity that interacts with a blockchain network using an identity — a principal. You can learn lots more
about principals and organizations elsewhere in this guide, but for now you know more than enough to continue your
understanding of peers!

Finally, note that it’s not really important where the peer is physically located — it could reside in the cloud, or in a
data centre owned by one of the organizations, or on a local machine — it’s the digital certificate associated with it
that identifies it as being owned by a particular organization. In our example above, P3 could be hosted in Orgl’s data
center, but as long as the digital certificate associated with it is issued by CA2, then it’s owned by Org2.

4.7.7 Peers and Orderers

We’ve seen that peers form the basis for a blockchain network, hosting ledgers and smart contracts which can be
queried and updated by peer-connected applications. However, the mechanism by which applications and peers interact

64 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

with each other to ensure that every peer’s ledger is kept consistent with each other is mediated by special nodes called
orderers, and it’s to these nodes we now turn our attention.

An update transaction is quite different from a query transaction because a single peer cannot, on its own, update the
ledger — updating requires the consent of other peers in the network. A peer requires other peers in the network to
approve a ledger update before it can be applied to a peer’s local ledger. This process is called consensus, which takes
much longer to complete than a simple query. But when all the peers required to approve the transaction do so, and the
transaction is committed to the ledger, peers will notify their connected applications that the ledger has been updated.
You’re about to be shown a lot more detail about how peers and orderers manage the consensus process in this section.

Specifically, applications that want to update the ledger are involved in a 3-phase process, which ensures that all the
peers in a blockchain network keep their ledgers consistent with each other.

¢ In the first phase, applications work with a subset of endorsing peers, each of which provide an endorsement of
the proposed ledger update to the application, but do not apply the proposed update to their copy of the ledger.

* In the second phase, these separate endorsements are collected together as transactions and packaged into blocks.

¢ In the third and final phase, these blocks are distributed back to every peer where each transaction is validated
before being committed to that peer’s copy of the ledger.

As you will see, orderer nodes are central to this process, so let’s investigate in a little more detail how applications
and peers use orderers to generate ledger updates that can be consistently applied to a distributed, replicated ledger.

Phase 1: Proposal

Phase 1 of the transaction workflow involves an interaction between an application and a set of peers — it does not
involve orderers. Phase 1 is only concerned with an application asking different organizations’ endorsing peers to
agree to the results of the proposed chaincode invocation.

To start phase 1, applications generate a transaction proposal which they send to each of the required set of peers for
endorsement. Each of these endorsing peers then independently executes a chaincode using the transaction proposal
to generate a transaction proposal response. It does not apply this update to the ledger, but rather simply signs it and
returns it to the application. Once the application has received a sufficient number of signed proposal responses, the
first phase of the transaction flow is complete. Let’s examine this phase in a little more detail.

Blockchain Chaincode
Network
Channel . Orderer

Y
ACIEE

Peer Ledger
Transaction T Transaction T1,
response R2
proposal P endorsed with E2
Ledger
\ transaction Principal PA (P1,P2)
tEl__ | T1 flowson ? communicates via
channel C channel C.

Transaction proposals are independently executed by peers who return endorsed proposal responses. In this example,
application Al generates transaction T1 proposal P which it sends to both peer P1 and peer P2 on channel C. Pl
executes S1 using transaction T1 proposal P generating transaction T1 response RI which it endorses with El. Inde-
pendently, P2 executes S1 using transaction T1 proposal P generating transaction T1 response R2 which it endorses
with E2. Application Al receives two endorsed responses for transaction T1, namely E1 and E2.

4.7. Peers 65

hyperledger-fabricdocs Documentation, Release master

Initially, a set of peers are chosen by the application to generate a set of proposed ledger updates. Which peers are
chosen by the application? Well, that depends on the endorsement policy (defined for a chaincode), which defines the
set of organizations that need to endorse a proposed ledger change before it can be accepted by the network. This
is literally what it means to achieve consensus — every organization who matters must have endorsed the proposed
ledger change before it will be accepted onto any peer’s ledger.

A peer endorses a proposal response by adding its digital signature, and signing the entire payload using its private
key. This endorsement can be subsequently used to prove that this organization’s peer generated a particular response.
In our example, if peer P1 is owned by organization Orgl, endorsement E1 corresponds to a digital proof that “Trans-
action T1 response R1 on ledger L1 has been provided by Orgl’s peer P1!”.

Phase 1 ends when the application receives signed proposal responses from sufficient peers. We note that different
peers can return different and therefore inconsistent transaction responses to the application for the same transaction
proposal. Tt might simply be that the result was generated at different times on different peers with ledgers at different
states, in which case an application can simply request a more up-to-date proposal response. Less likely, but much
more seriously, results might be different because the chaincode is non-deterministic. Non-determinism is the enemy
of chaincodes and ledgers and if it occurs it indicates a serious problem with the proposed transaction, as inconsis-
tent results cannot, obviously, be applied to ledgers. An individual peer cannot know that their transaction result is
non-deterministic — transaction responses must be gathered together for comparison before non-determinism can be
detected. (Strictly speaking, even this is not enough, but we defer this discussion to the transaction section, where
non-determinism is discussed in detail.)

At the end of phase 1, the application is free to discard inconsistent transaction responses if it wishes to do so,
effectively terminating the transaction workflow early. We’ll see later that if an application tries to use an inconsistent
set of transaction responses to update the ledger, it will be rejected.

Phase 2: Ordering and packaging transactions into blocks

The second phase of the transaction workflow is the packaging phase. The orderer is pivotal to this process — it re-
ceives transactions containing endorsed transaction proposal responses from many applications, and orders the trans-
actions into blocks. For more details about the ordering and packaging phase, check out our conceptual information
about the ordering phase.

Phase 3: Validation and commit

At the end of phase 2, we see that orderers have been responsible for the simple but vital processes of collecting
proposed transaction updates, ordering them, and packaging them into blocks, ready for distribution to the peers.

The final phase of the transaction workflow involves the distribution and subsequent validation of blocks from the
orderer to the peers, where they can be committed to the ledger. Specifically, at each peer, every transaction within a
block is validated to ensure that it has been consistently endorsed by all relevant organizations before it is committed
to the ledger. Failed transactions are retained for audit, but are not committed to the ledger.

66 Chapter 4. Key Concepts

../orderer/ordering_service.html#phase-two-ordering-and-packaging-transactions-into-blocks
../orderer/ordering_service.html#phase-two-ordering-and-packaging-transactions-into-blocks

hyperledger-fabricdocs Documentation, Release master

Peer

Blockchain
Network

Orderer

© Channel .

Ledger - Block B
1 Ledger L1 has I

B blockchain with :;

Block B1 contains
transactions
T1,7T2,T3...

blocks B0, B1

Block B1 flows
on channel C

The second role of an orderer node is to distribute blocks to peers. In this example, orderer Ol distributes block B2 to
peer Pl and peer P2. Peer P1 processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel,
peer P2 processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is complete,
the ledger L1 has been consistently updated on peers P1 and P2, and each may inform connected applications that the
transaction has been processed.

Principal PA (P1,
P2) communicates
via channel C.

Phase 3 begins with the orderer distributing blocks to all peers connected to it. Peers are connected to orderers on
channels such that when a new block is generated, all of the peers connected to the orderer will be sent a copy of the
new block. Each peer will process this block independently, but in exactly the same way as every other peer on the
channel. In this way, we’ll see that the ledger can be kept consistent. It’s also worth noting that not every peer needs to
be connected to an orderer — peers can cascade blocks to other peers using the gossip protocol, who also can process
them independently. But let’s leave that discussion to another time!

Upon receipt of a block, a peer will process each transaction in the sequence in which it appears in the block. For
every transaction, each peer will verify that the transaction has been endorsed by the required organizations according
to the endorsement policy of the chaincode which generated the transaction. For example, some transactions may
only need to be endorsed by a single organization, whereas others may require multiple endorsements before they are
considered valid. This process of validation verifies that all relevant organizations have generated the same outcome
or result. Also note that this validation is different than the endorsement check in phase 1, where it is the application
that receives the response from endorsing peers and makes the decision to send the proposal transactions. In case the
application violates the endorsement policy by sending wrong transactions, the peer is still able to reject the transaction
in the validation process of phase 3.

If a transaction has been endorsed correctly, the peer will attempt to apply it to the ledger. To do this, a peer must
perform a ledger consistency check to verify that the current state of the ledger is compatible with the state of the
ledger when the proposed update was generated. This may not always be possible, even when the transaction has
been fully endorsed. For example, another transaction may have updated the same asset in the ledger such that the
transaction update is no longer valid and therefore can no longer be applied. In this way, the ledger is kept consistent
across each peer in the channel because they each follow the same rules for validation.

After a peer has successfully validated each individual transaction, it updates the ledger. Failed transactions are not
applied to the ledger, but they are retained for audit purposes, as are successful transactions. This means that peer
blocks are almost exactly the same as the blocks received from the orderer, except for a valid or invalid indicator on
each transaction in the block.

We also note that phase 3 does not require the running of chaincodes — this is done only during phase 1, and that’s im-
portant. It means that chaincodes only have to be available on endorsing nodes, rather than throughout the blockchain
network. This is often helpful as it keeps the logic of the chaincode confidential to endorsing organizations. This is
in contrast to the output of the chaincodes (the transaction proposal responses) which are shared with every peer in
the channel, whether or not they endorsed the transaction. This specialization of endorsing peers is designed to help
scalability and confidentiality.

4.7. Peers 67

hyperledger-fabricdocs Documentation, Release master

Finally, every time a block is committed to a peer’s ledger, that peer generates an appropriate event. Block events
include the full block content, while block transaction events include summary information only, such as whether each
transaction in the block has been validated or invalidated. Chaincode events that the chaincode execution has produced
can also be published at this time. Applications can register for these event types so that they can be notified when
they occur. These notifications conclude the third and final phase of the transaction workflow.

In summary, phase 3 sees the blocks which are generated by the orderer consistently applied to the ledger. The strict
ordering of transactions into blocks allows each peer to validate that transaction updates are consistently applied across
the blockchain network.

Orderers and Consensus

This entire transaction workflow process is called consensus because all peers have reached agreement on the order and
content of transactions, in a process that is mediated by orderers. Consensus is a multi-step process and applications
are only notified of ledger updates when the process is complete — which may happen at slightly different times on
different peers.

We will discuss orderers in a lot more detail in a future orderer topic, but for now, think of orderers as nodes which
collect and distribute proposed ledger updates from applications for peers to validate and include on the ledger.

That’s it! We’ve now finished our tour of peers and the other components that they relate to in Fabric. We’ve seen that
peers are in many ways the most fundamental element — they form the network, host chaincodes and the ledger, handle
transaction proposals and responses, and keep the ledger up-to-date by consistently applying transaction updates to it.

4.8 Ledger

Audience: Architects, Application and smart contract developers, administrators

A ledger is a key concept in Hyperledger Fabric; it stores important factual information about business objects; both
the current value of the attributes of the objects, and the history of transactions that resulted in these current values.

In this topic, we’re going to cover:
e What is a Ledger?
» Storing facts about business objects
* A blockchain ledger
* The world state
» The blockchain data structure
* How blocks are stored in a blockchain
» Transactions
* World state database options
* The Basic example ledger
* Ledgers and namespaces

» Ledgers and channels

68 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

4.8.1 What is a Ledger?

A ledger contains the current state of a business as a journal of transactions. The earliest European and Chinese ledgers
date from almost 1000 years ago, and the Sumerians had stone ledgers 4000 years ago — but let’s start with a more
up-to-date example!

You’re probably used to looking at your bank account. What’s most important to you is the available balance — it’s
what you’re able to spend at the current moment in time. If you want to see how your balance was derived, then you
can look through the transaction credits and debits that determined it. This is a real life example of a ledger — a state
(your bank balance), and a set of ordered transactions (credits and debits) that determine it. Hyperledger Fabric is
motivated by these same two concerns — to present the current value of a set of ledger states, and to capture the history
of the transactions that determined these states.

4.8.2 Ledgers, Facts, and States

A ledger doesn’t literally store business objects — instead it stores facts about those objects. When we say “we store a
business object in a ledger” what we really mean is that we’re recording the facts about the current state of an object,
and the facts about the history of transactions that led to the current state. In an increasingly digital world, it can feel
like we’re looking at an object, rather than facts about an object. In the case of a digital object, it’s likely that it lives in
an external datastore; the facts we store in the ledger allow us to identify its location along with other key information
about it.

While the facts about the current state of a business object may change, the history of facts about it is immutable,
it can be added to, but it cannot be retrospectively changed. We’re going to see how thinking of a blockchain as an
immutable history of facts about business objects is a simple yet powerful way to understand it.

Let’s now take a closer look at the Hyperledger Fabric ledger structure!

4.8.3 The Ledger

In Hyperledger Fabric, a ledger consists of two distinct, though related, parts — a world state and a blockchain. Each
of these represents a set of facts about a set of business objects.

Firstly, there’s a world state — a database that holds current values of a set of ledger states. The world state makes
it easy for a program to directly access the current value of a state rather than having to calculate it by traversing the
entire transaction log. Ledger states are, by default, expressed as key-value pairs, and we’ll see later how Hyperledger
Fabric provides flexibility in this regard. The world state can change frequently, as states can be created, updated and
deleted.

Secondly, there’s a blockchain — a transaction log that records all the changes that have resulted in the current the
world state. Transactions are collected inside blocks that are appended to the blockchain — enabling you to understand
the history of changes that have resulted in the current world state. The blockchain data structure is very different to
the world state because once written, it cannot be modified; it is immutable.

4.8. Ledger 69

http://www.sciencephoto.com/media/686227/view/accounting-ledger-sumerian-cuneiform

hyperledger-fabricdocs Documentation, Release master

Ledger

World State

Blockchain

L comprises B and W

B determines W

A Ledger L comprises blockchain B and world state W, where blockchain B determines world state W. We can also say
that world state W is derived from blockchain B.

It’s helpful to think of there being one logical ledger in a Hyperledger Fabric network. In reality, the network maintains
multiple copies of a ledger — which are kept consistent with every other copy through a process called consensus. The
term Distributed Ledger Technology (DLT) is often associated with this kind of ledger — one that is logically singular,
but has many consistent copies distributed throughout a network.

Let’s now examine the world state and blockchain data structures in more detail.

4.8.4 World State

The world state holds the current value of the attributes of a business object as a unique ledger state. That’s use-
ful because programs usually require the current value of an object; it would be cumbersome to traverse the entire
blockchain to calculate an object’s current value — you just get it directly from the world state.

ﬁ Ledger world state

A ledger state with
key=K. It contains a set
of facts expressed as a

. . R simple value, V. The
{key=CAR1, value=Audi} version=0 . ;
state is at version 0.

A ledger state with
key=K. It contains a set
{key=K, value = {KV}} ||of facts expressed as a

version=0 set of key-value pairs
{KV}. The state is at
version 0.

{key=K, value =V}

{key= CAR2, value = {type: BMW, color: red, owner: Jane}} version=0

A ledger world state containing two states. The first state is: key=CARI and value=Audi. The second state has a more
complex value: key=CAR2 and value={model:BMW, color=red, owner=Janej}. Both states are at version 0.

A ledger state records a set of facts about a particular business object. Our example shows ledger states for two cars,

70 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

CARI1 and CAR2, each having a key and a value. An application program can invoke a smart contract which uses
simple ledger APIs to get, put and delete states. Notice how a state value can be simple (Audi...) or compound
(type:BMW...). The world state is often queried to retrieve objects with certain attributes, for example to find all red
BMWs.

The world state is implemented as a database. This makes a lot of sense because a database provides a rich set of
operators for the efficient storage and retrieval of states. We’ll see later that Hyperledger Fabric can be configured
to use different world state databases to address the needs of different types of state values and the access patterns
required by applications, for example in complex queries.

Applications submit transactions which capture changes to the world state, and these transactions end up being com-
mitted to the ledger blockchain. Applications are insulated from the details of this consensus mechanism by the
Hyperledger Fabric SDK; they merely invoke a smart contract, and are notified when the transaction has been in-
cluded in the blockchain (whether valid or invalid). The key design point is that only transactions that are signed by
the required set of endorsing organizations will result in an update to the world state. If a transaction is not signed by
sufficient endorsers, it will not result in a change of world state. You can read more about how applications use smart
contracts, and how to develop applications.

You’ll also notice that a state has a version number, and in the diagram above, states CAR1 and CAR?2 are at their
starting versions, 0. The version number is for internal use by Hyperledger Fabric, and is incremented every time
the state changes. The version is checked whenever the state is updated to make sure the current states matches the
version at the time of endorsement. This ensures that the world state is changing as expected; that there has not been
a concurrent update.

Finally, when a ledger is first created, the world state is empty. Because any transaction which represents a valid change
to world state is recorded on the blockchain, it means that the world state can be re-generated from the blockchain
at any time. This can be very convenient — for example, the world state is automatically generated when a peer is
created. Moreover, if a peer fails abnormally, the world state can be regenerated on peer restart, before transactions
are accepted.

4.8.5 Blockchain

Let’s now turn our attention from the world state to the blockchain. Whereas the world state contains a set of facts
relating to the current state of a set of business objects, the blockchain is an historical record of the facts about how
these objects arrived at their current states. The blockchain has recorded every previous version of each ledger state
and how it has been changed.

The blockchain is structured as sequential log of interlinked blocks, where each block contains a sequence of transac-
tions, each transaction representing a query or update to the world state. The exact mechanism by which transactions
are ordered is discussed elsewhere; what’s important is that block sequencing, as well as transaction sequencing within
blocks, is established when blocks are first created by a Hyperledger Fabric component called the ordering service.

Each block’s header includes a hash of the block’s transactions, as well a hash of the prior block’s header. In this way,
all transactions on the ledger are sequenced and cryptographically linked together. This hashing and linking makes the
ledger data very secure. Even if one node hosting the ledger was tampered with, it would not be able to convince all the
other nodes that it has the ‘correct’ blockchain because the ledger is distributed throughout a network of independent
nodes.

The blockchain is always implemented as a file, in contrast to the world state, which uses a database. This is a sensible
design choice as the blockchain data structure is heavily biased towards a very small set of simple operations. Ap-
pending to the end of the blockchain is the primary operation, and query is currently a relatively infrequent operation.

Let’s have a look at the structure of a blockchain in a little more detail.

4.8. Ledger 71

../txflow.html
../smartcontract/smartcontract.html
../smartcontract/smartcontract.html
../developapps/developing_applications.html
../peers/peers.html#peers-and-orderers

hyperledger-fabricdocs Documentation, Release master

Blockchain
1 Block
el H Block header
Do D Block data

D1 D2
(genesis)

Transaction

w
ol |l 1P
El

M Block metadata

H2 is chained to H1

A blockchain B containing blocks BO, Bl, B2, B3. BO is the first block in the blockchain, the genesis block.
In the above diagram, we can see that block B2 has a block data D2 which contains all its transactions: T5, T6, T7.

Most importantly, B2 has a block header H2, which contains a cryptographic hash of all the transactions in D2 as well

as a hash of H1. In this way, blocks are inextricably and immutably linked to each other, which the term blockchain
so neatly captures!

Finally, as you can see in the diagram, the first block in the blockchain is called the genesis block. It’s the starting
point for the ledger, though it does not contain any user transactions. Instead, it contains a configuration transaction
containing the initial state of the network channel (not shown). We discuss the genesis block in more detail when we
discuss the blockchain network and channels in the documentation.

4.8.6 Blocks

Let’s have a closer look at the structure of a block. It consists of three sections
¢ Block Header
This section comprises three fields, written when a block is created.

— Block number: An integer starting at O (the genesis block), and increased by 1 for every new block
appended to the blockchain.

— Current Block Hash: The hash of all the transactions contained in the current block.
— Previous Block Header Hash: The hash from the previous block header.

These fields are internally derived by cryptographically hashing the block data. They ensure that each and every
block is inextricably linked to its neighbour, leading to an immutable ledger.

72 Chapter 4. Key Concepts

../channels.html

hyperledger-fabricdocs Documentation, Release master

1 H2

Block header
ﬂ H2 (block number) 2

2| |Block number
D2 [2]
CH2 (current block hash)

Hash of current block
M2

=
N

@)
T
N

transactions

Copy of hash from
previous block

PH1

P H 1 (previous block hash)

V2 is detailed view of H2

Block header details. The header H2 of block B2 consists of block number 2, the hash CH2 of the current block
data D2, and the hash of the prior block header HI.

¢ Block Data

This section contains a list of transactions arranged in order. It is written when the block is created by the
ordering service. These transactions have a rich but straightforward structure, which we describe lafer in this
topic.

¢ Block Metadata

This section contains the certificate and signature of the block creator which is used to verify the block by
network nodes. Subsequently, the block committer adds a valid/invalid indicator for every transaction into a
bitmap that also resides in the block metadata, as well as a hash of the cumulative state updates up until and
including that block, in order to detect a state fork. Unlike the block data and header fields, this section is not an
input to the block hash computation.

4.8.7 Transactions

As we’ve seen, a transaction captures changes to the world state. Let’s have a look at the detailed blockdata structure
which contains the transactions in a block.

4.8. Ledger 73

hyperledger-fabricdocs Documentation, Release master

T4

H4

Transaction
S 4 Header
D1 Signature
: P4 Proposal
Response
R4
Endorsements
E4 T4 V4 |vais detailed view of T4

Transaction details. Transaction T4 in blockdata D1 of block Bl consists of transaction header, H4, a transaction
signature, S4, a transaction proposal P4, a transaction response, R4, and a list of endorsements, E4.

In the above example, we can see the following fields:

Header

This section, illustrated by H4, captures some essential metadata about the transaction — for example, the name
of the relevant chaincode, and its version.

Signature

This section, illustrated by S4, contains a cryptographic signature, created by the client application. This field
is used to check that the transaction details have not been tampered with, as it requires the application’s private
key to generate it.

Proposal

This field, illustrated by P4, encodes the input parameters supplied by an application to the smart contract
which creates the proposed ledger update. When the smart contract runs, this proposal provides a set of input
parameters, which, in combination with the current world state, determines the new world state.

Response

This section, illustrated by R4, captures the before and after values of the world state, as a Read Write set
(RW-set). It’s the output of a smart contract, and if the transaction is successfully validated, it will be applied to
the ledger to update the world state.

Endorsements

As shown in E4, this is a list of signed transaction responses from each required organization sufficient to satisfy
the endorsement policy. You'll notice that, whereas only one transaction response is included in the transaction,
there are multiple endorsements. That’s because each endorsement effectively encodes its organization’s partic-
ular transaction response — meaning that there’s no need to include any transaction response that doesn’t match
sufficient endorsements as it will be rejected as invalid, and not update the world state.

That concludes the major fields of the transaction — there are others, but these are the essential ones that you need to
understand to have a solid understanding of the ledger data structure.

74

Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

4.8.8 World State database options

The world state is physically implemented as a database, to provide simple and efficient storage and retrieval of ledger
states. As we’ve seen, ledger states can have simple or compound values, and to accommodate this, the world state
database implementation can vary, allowing these values to be efficiently implemented. Options for the world state
database currently include LevelDB and CouchDB.

LevelDB is the default and is particularly appropriate when ledger states are simple key-value pairs. A LevelDB
database is co-located with the peer node — it is embedded within the same operating system process.

CouchDB is a particularly appropriate choice when ledger states are structured as JSON documents because CouchDB
supports the rich queries and update of richer data types often found in business transactions. Implementation-wise,
CouchDB runs in a separate operating system process, but there is still a 1:1 relation between a peer node and a
CouchDB instance. All of this is invisible to a smart contract. See CouchDB as the StateDatabase for more information
on CouchDB.

In LevelDB and CouchDB, we see an important aspect of Hyperledger Fabric — it is pluggable. The world state
database could be a relational data store, or a graph store, or a temporal database. This provides great flexibility in the
types of ledger states that can be efficiently accessed, allowing Hyperledger Fabric to address many different types of
problems.

4.8.9 Example Ledger: Basic Asset Transfer
As we end this topic on the ledger, let’s have a look at a sample ledger. If you’ve run the basic asset transfer sample
application, then you’ve created this ledger.

The basic sample app creates a set of 6 assets each with a unique identity; a different color, size, owner, and appraised
value. Here’s what the ledger looks like after the first four assets have been created.

key=ASSET4, value={color:yellow, size: 10, owner: Max, appraisedValue: 600} version=0
key=ASSET3, value={color:§reen, size: 10, owner: Jin Soo, appraisedValue: 500} version=0
key=ASSET2, value={color:red, size: 5, owner: Brad, appraisedValue: 400} version=0
key=ASSET1, value={color:blue, size: 5, owner: Tomoko, appraisedValue: 300} version=0

]
I

The ledger, L, comprises a world state, W and a blockchain, B. W contains four states with keys: ASSETI, ASSET2,
ASSET3, and ASSET4. B contains two blocks, 0 and 1. Block 1 contains four transactions: T1, T2, T3, T4.

We can see that the world state contains states that correspond to ASSET1, ASSET2, ASSET3, and ASSET4. ASSET1
has a value which indicates that it is a blue with size 5, currently owned by Tomoko, and we can see similar states and
values for the other cars. Moreover, we can see that all car states are at version number 0, indicating that this is their
starting version number — they have not been updated since they were created.

We can also see that the blockchain contains two blocks. Block O is the genesis block, though it does not contain
any transactions that relate to cars. Block 1 however, contains transactions T1, T2, T3, T4 and these correspond to

4.8. Ledger 75

../couchdb_as_state_database.html
../write_first_app.html
../write_first_app.html

hyperledger-fabricdocs Documentation, Release master

transactions that created the initial states for ASSET1 to ASSET4 in the world state. We can see that block 1 is linked
to block 0.

We have not shown the other fields in the blocks or transactions, specifically headers and hashes. If you’re interested
in the precise details of these, you will find a dedicated reference topic elsewhere in the documentation. It gives you
a fully worked example of an entire block with its transactions in glorious detail — but for now, you have achieved a
solid conceptual understanding of a Hyperledger Fabric ledger. Well done!

4.8.10 Namespaces

Even though we have presented the ledger as though it were a single world state and single blockchain, that’s a little bit
of an over-simplification. In reality, each chaincode has its own world state that is separate from all other chaincodes.
World states are in a namespace so that only smart contracts within the same chaincode can access a given namespace.

A blockchain is not namespaced. It contains transactions from many different smart contract namespaces. You can
read more about chaincode namespaces in this topic.

Let’s now look at how the concept of a namespace is applied within a Hyperledger Fabric channel.

4.8.11 Channels

In Hyperledger Fabric, each channel has a completely separate ledger. This means a completely separate blockchain,
and completely separate world states, including namespaces. It is possible for applications and smart contracts to
communicate between channels so that ledger information can be accessed between them.

You can read more about how ledgers work with channels in this topic.

4.8.12 More information

See the Transaction Flow, Read-Write set semantics and CouchDB as the StateDatabase topics for a deeper dive on
transaction flow, concurrency control, and the world state database.

4.9 The Ordering Service

Audience: Architects, ordering service admins, channel creators

This topic serves as a conceptual introduction to the concept of ordering, how orderers interact with peers, the role
they play in a transaction flow, and an overview of the currently available implementations of the ordering service,
with a particular focus on the recommended Raft ordering service implementation.

4.9.1 What is ordering?

Many distributed blockchains, such as Ethereum and Bitcoin, are not permissioned, which means that any node can
participate in the consensus process, wherein transactions are ordered and bundled into blocks. Because of this fact,
these systems rely on probabilistic consensus algorithms which eventually guarantee ledger consistency to a high
degree of probability, but which are still vulnerable to divergent ledgers (also known as a ledger “fork™), where different
participants in the network have a different view of the accepted order of transactions.

Hyperledger Fabric works differently. It features a node called an orderer (it’s also known as an “ordering node”)
that does this transaction ordering, which along with other orderer nodes forms an ordering service. Because Fabric’s
design relies on deterministic consensus algorithms, any block validated by the peer is guaranteed to be final and
correct. Ledgers cannot fork the way they do in many other distributed and permissionless blockchain networks.

76 Chapter 4. Key Concepts

../developapps/chaincodenamespace.html
../channels.html
../developapps/chaincodenamespace.html#channels
../txflow.html
../readwrite.html
../couchdb_as_state_database.html

hyperledger-fabricdocs Documentation, Release master

In addition to promoting finality, separating the endorsement of chaincode execution (which happens at the peers)
from ordering gives Fabric advantages in performance and scalability, eliminating bottlenecks which can occur when
execution and ordering are performed by the same nodes.

4.9.2 Orderer nodes and channel configuration

Orderers also enforce basic access control for channels, restricting who can read and write data to them, and who
can configure them. Remember that who is authorized to modify a configuration element in a channel is subject
to the policies that the relevant administrators set when they created the consortium or the channel. Configuration
transactions are processed by the orderer, as it needs to know the current set of policies to execute its basic form
of access control. In this case, the orderer processes the configuration update to make sure that the requestor has the
proper administrative rights. If so, the orderer validates the update request against the existing configuration, generates
a new configuration transaction, and packages it into a block that is relayed to all peers on the channel. The peers then
process the configuration transactions in order to verify that the modifications approved by the orderer do indeed
satisfy the policies defined in the channel.

4.9.3 Orderer nodes and identity

Everything that interacts with a blockchain network, including peers, applications, admins, and orderers, acquires their
organizational identity from their digital certificate and their Membership Service Provider (MSP) definition.

For more information about identities and MSPs, check out our documentation on Identity and Membership.

Just like peers, ordering nodes belong to an organization. And similar to peers, a separate Certificate Authority (CA)
should be used for each organization. Whether this CA will function as the root CA, or whether you choose to deploy
a root CA and then intermediate CAs associated with that root CA, is up to you.

4.9.4 Orderers and the transaction flow

Phase one: Proposal

We’ve seen from our topic on Peers that they form the basis for a blockchain network, hosting ledgers, which can be
queried and updated by applications through smart contracts.

Specifically, applications that want to update the ledger are involved in a process with three phases that ensures all of
the peers in a blockchain network keep their ledgers consistent with each other.

In the first phase, a client application sends a transaction proposal to a subset of peers that will invoke a smart contract to
produce a proposed ledger update and then endorse the results. The endorsing peers do not apply the proposed update
to their copy of the ledger at this time. Instead, the endorsing peers return a proposal response to the client application.
The endorsed transaction proposals will ultimately be ordered into blocks in phase two, and then distributed to all
peers for final validation and commit in phase three.

For an in-depth look at the first phase, refer back to the Peers topic.

Phase two: Ordering and packaging transactions into blocks

After the completion of the first phase of a transaction, a client application has received an endorsed transaction
proposal response from a set of peers. It’s now time for the second phase of a transaction.

In this phase, application clients submit transactions containing endorsed transaction proposal responses to an ordering
service node. The ordering service creates blocks of transactions which will ultimately be distributed to all peers on
the channel for final validation and commit in phase three.

4.9. The Ordering Service 77

../identity/identity.html
../membership/membership.html
../peers/peers.html
../peers/peers.html#phase-1-proposal

hyperledger-fabricdocs Documentation, Release master

Ordering service nodes receive transactions from many different application clients concurrently. These ordering
service nodes work together to collectively form the ordering service. Its job is to arrange batches of submitted
transactions into a well-defined sequence and package them into blocks. These blocks will become the blocks of the
blockchain!

The number of transactions in a block depends on channel configuration parameters related to the desired size and
maximum elapsed duration for a block (BatchSize and BatchTimeout parameters, to be exact). The blocks are
then saved to the orderer’s ledger and distributed to all peers that have joined the channel. If a peer happens to be down
at this time, or joins the channel later, it will receive the blocks after reconnecting to an ordering service node, or by
gossiping with another peer. We’ll see how this block is processed by peers in the third phase.

Blockchain Peer
/ \ Network
Tl T2
oc rderer
T6 15
Al
——
ransaction T1,
A2 response R2a © Channel
endorsed with E2
T Block B1 contains
A 1 :; transactions
EA = 1172, 3.
C _) Ledger Principal PA
N transaction T1 (P1,P2)
-
flows on channel communicates
C via channel C.

The first role of an ordering node is to package proposed ledger updates. In this example, application Al sends a
transaction T1 endorsed by E1 and E2 to the orderer Ol. In parallel, Application A2 sends transaction T2 endorsed
by EI to the orderer Ol. Ol packages transaction Tl from application Al and transaction T2 from application
A2 together with other transactions from other applications in the network into block B2. We can see that in B2,
the transaction order is T1,T2,73,T4,T6,T5 — which may not be the order in which these transactions arrived at the
orderer! (This example shows a very simplified ordering service configuration with only one ordering node.)

It’s worth noting that the sequencing of transactions in a block is not necessarily the same as the order received by
the ordering service, since there can be multiple ordering service nodes that receive transactions at approximately the
same time. What’s important is that the ordering service puts the transactions into a strict order, and peers will use this
order when validating and committing transactions.

This strict ordering of transactions within blocks makes Hyperledger Fabric a little different from other blockchains
where the same transaction can be packaged into multiple different blocks that compete to form a chain. In Hyperledger
Fabric, the blocks generated by the ordering service are final. Once a transaction has been written to a block, its
position in the ledger is immutably assured. As we said earlier, Hyperledger Fabric’s finality means that there are no
ledger forks — validated transactions will never be reverted or dropped.

We can also see that, whereas peers execute smart contracts and process transactions, orderers most definitely do not.
Every authorized transaction that arrives at an orderer is mechanically packaged in a block — the orderer makes no
judgement as to the content of a transaction (except for channel configuration transactions, as mentioned earlier).

At the end of phase two, we see that orderers have been responsible for the simple but vital processes of collecting
proposed transaction updates, ordering them, and packaging them into blocks, ready for distribution.

Phase three: Validation and commit

The third phase of the transaction workflow involves the distribution and subsequent validation of blocks from the
orderer to the peers, where they can be committed to the ledger.

78 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Phase 3 begins with the orderer distributing blocks to all peers connected to it. It’s also worth noting that not every
peer needs to be connected to an orderer — peers can cascade blocks to other peers using the gossip protocol.

Each peer will validate distributed blocks independently, but in a deterministic fashion, ensuring that ledgers remain
consistent. Specifically, each peer in the channel will validate each transaction in the block to ensure it has been
endorsed by the required organization’s peers, that its endorsements match, and that it hasn’t become invalidated by
other recently committed transactions which may have been in-flight when the transaction was originally endorsed.
Invalidated transactions are still retained in the immutable block created by the orderer, but they are marked as invalid
by the peer and do not update the ledger’s state.

Channel Orderer

Blockchain Peer
Network

Ledger - Block B

Ledger L1 has T Block B1 contains

blockchain with transactions

blocks BO, B1 = 1,72, T3...

Block B1 flows Principal PA (P1,

on channel C ?' P2) communicates
via channel C.

The second role of an ordering node is to distribute blocks to peers. In this example, orderer O1 distributes block B2 to
peer Pl and peer P2. Peer P processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel,
peer P2 processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is complete,
the ledger L1 has been consistently updated on peers P1 and P2, and each may inform connected applications that the
transaction has been processed.

In summary, phase three sees the blocks generated by the ordering service applied consistently to the ledger. The
strict ordering of transactions into blocks allows each peer to validate that transaction updates are consistently applied
across the blockchain network.

For a deeper look at phase 3, refer back to the Peers topic.

4.9.5 Ordering service implementations

While every ordering service currently available handles transactions and configuration updates the same way, there are
nevertheless several different implementations for achieving consensus on the strict ordering of transactions between
ordering service nodes.

For information about how to stand up an ordering node (regardless of the implementation the node will be used in),
check out our documentation on deploying a production ordering service.

¢ Raft (recommended)

New as of v1.4.1, Raft is a crash fault tolerant (CFT) ordering service based on an implementation of Raft
protocol in et cd. Raft follows a “leader and follower” model, where a leader node is elected (per channel)
and its decisions are replicated by the followers. Raft ordering services should be easier to set up and manage
than Kafka-based ordering services, and their design allows different organizations to contribute nodes to a
distributed ordering service.

» Kafka (deprecated in v2.x)

4.9. The Ordering Service 79

../gossip.html
../peers/peers.html#phase-3-validation-and-commit
../deployorderer/ordererplan.html
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://coreos.com/etcd/

hyperledger-fabricdocs Documentation, Release master

Similar to Raft-based ordering, Apache Kafka is a CFT implementation that uses a “leader and follower” node
configuration. Kafka utilizes a ZooKeeper ensemble for management purposes. The Kafka based ordering
service has been available since Fabric v1.0, but many users may find the additional administrative overhead of
managing a Kafka cluster intimidating or undesirable.

* Solo (deprecated in v2.x)

The Solo implementation of the ordering service is intended for test only and consists only of a single ordering
node. It has been deprecated and may be removed entirely in a future release. Existing users of Solo should
move to a single node Raft network for equivalent function.

4.9.6 Raft

For information on how to customize the orderer.yaml file that determines the configuration of an ordering node,
check out the Checklist for a production ordering node.

The go-to ordering service choice for production networks, the Fabric implementation of the established Raft protocol
uses a “leader and follower” model, in which a leader is dynamically elected among the ordering nodes in a channel
(this collection of nodes is known as the “consenter set”), and that leader replicates messages to the follower nodes.
Because the system can sustain the loss of nodes, including leader nodes, as long as there is a majority of ordering
nodes (what’s known as a “quorum”) remaining, Raft is said to be “crash fault tolerant” (CFT). In other words, if there
are three nodes in a channel, it can withstand the loss of one node (leaving two remaining). If you have five nodes in a
channel, you can lose two nodes (leaving three remaining nodes). This feature of a Raft ordering service is a factor in
the establishment of a high availability strategy for your ordering service. Additionally, in a production environment,
you would want to spread these nodes across data centers and even locations. For example, by putting one node in
three different data centers. That way, if a data center or entire location becomes unavailable, the nodes in the other
data centers continue to operate.

From the perspective of the service they provide to a network or a channel, Raft and the existing Kafka-based ordering
service (which we’ll talk about later) are similar. They’re both CFT ordering services using the leader and follower
design. If you are an application developer, smart contract developer, or peer administrator, you will not notice
a functional difference between an ordering service based on Raft versus Kafka. However, there are a few major
differences worth considering, especially if you intend to manage an ordering service.

» Raft is easier to set up. Although Kafka has many admirers, even those admirers will (usually) admit that
deploying a Kafka cluster and its ZooKeeper ensemble can be tricky, requiring a high level of expertise in Kafka
infrastructure and settings. Additionally, there are many more components to manage with Kafka than with Raft,
which means that there are more places where things can go wrong. Kafka also has its own versions, which
must be coordinated with your orderers. With Raft, everything is embedded into your ordering node.

» Katka and Zookeeper are not designed to be run across large networks. While Kafka is CFT, it should be
run in a tight group of hosts. This means that practically speaking you need to have one organization run the
Kafka cluster. Given that, having ordering nodes run by different organizations when using Kafka (which Fabric
supports) doesn’t decentralize the nodes because ultimately the nodes all go to a Kafka cluster which is under
the control of a single organization. With Raft, each organization can have its own ordering nodes, participating
in the ordering service, which leads to a more decentralized system.

 Raft is supported natively, which means that users are required to get the requisite images and learn how to use
Kafka and ZooKeeper on their own. Likewise, support for Kafka-related issues is handled through Apache, the
open-source developer of Kafka, not Hyperledger Fabric. The Fabric Raft implementation, on the other hand,
has been developed and will be supported within the Fabric developer community and its support apparatus.

* Where Kafka uses a pool of servers (called “Kafka brokers”) and the admin of the orderer organization specifies
how many nodes they want to use on a particular channel, Raft allows the users to specify which ordering nodes
will be deployed to which channel. In this way, peer organizations can make sure that, if they also own an
orderer, this node will be made a part of a ordering service of that channel, rather than trusting and depending
on a central admin to manage the Kafka nodes.

80 Chapter 4. Key Concepts

../deployorderer/ordererchecklist.html
https://kafka.apache.org/

hyperledger-fabricdocs Documentation, Release master

* Raft is the first step toward Fabric’s development of a byzantine fault tolerant (BFT) ordering service. As we’ll
see, some decisions in the development of Raft were driven by this. If you are interested in BFT, learning how
to use Raft should ease the transition.

For all of these reasons, support for Kafka-based ordering service is being deprecated in Fabric v2.x.

Note: Similar to Solo and Kafka, a Raft ordering service can lose transactions after acknowledgement of receipt has
been sent to a client. For example, if the leader crashes at approximately the same time as a follower provides
acknowledgement of receipt. Therefore, application clients should listen on peers for transaction commit events
regardless (to check for transaction validity), but extra care should be taken to ensure that the client also gracefully
tolerates a timeout in which the transaction does not get committed in a configured timeframe. Depending on the
application, it may be desirable to resubmit the transaction or collect a new set of endorsements upon such a timeout.

Raft concepts

While Raft offers many of the same features as Kafka — albeit in a simpler and easier-to-use package — it functions
substantially different under the covers from Kafka and introduces a number of new concepts, or twists on existing
concepts, to Fabric.

Log entry. The primary unit of work in a Raft ordering service is a “log entry”, with the full sequence of such entries
known as the “log”. We consider the log consistent if a majority (a quorum, in other words) of members agree on the
entries and their order, making the logs on the various orderers replicated.

Consenter set. The ordering nodes actively participating in the consensus mechanism for a given channel and receiv-
ing replicated logs for the channel.

Finite-State Machine (FSM). Every ordering node in Raft has an FSM and collectively they’re used to ensure that
the sequence of logs in the various ordering nodes is deterministic (written in the same sequence).

Quorum. Describes the minimum number of consenters that need to affirm a proposal so that transactions can be
ordered. For every consenter set, this is a majority of nodes. In a cluster with five nodes, three must be available
for there to be a quorum. If a quorum of nodes is unavailable for any reason, the ordering service cluster becomes
unavailable for both read and write operations on the channel, and no new logs can be committed.

Leader. This is not a new concept — Kafka also uses leaders — but it’s critical to understand that at any given time, a
channel’s consenter set elects a single node to be the leader (we’ll describe how this happens in Raft later). The leader
is responsible for ingesting new log entries, replicating them to follower ordering nodes, and managing when an entry
is considered committed. This is not a special type of orderer. It is only a role that an orderer may have at certain
times, and then not others, as circumstances determine.

Follower. Again, not a new concept, but what’s critical to understand about followers is that the followers receive the
logs from the leader and replicate them deterministically, ensuring that logs remain consistent. As we’ll see in our
section on leader election, the followers also receive “heartbeat” messages from the leader. In the event that the leader
stops sending those message for a configurable amount of time, the followers will initiate a leader election and one of
them will be elected the new leader.

Raft in a transaction flow

Every channel runs on a separate instance of the Raft protocol, which allows each instance to elect a different leader.
This configuration also allows further decentralization of the service in use cases where clusters are made up of
ordering nodes controlled by different organizations. Ordering nodes can be added or removed from a channel as
needed as long as only a single node is added or removed at a time. While this configuration creates more overhead in
the form of redundant heartbeat messages and goroutines, it lays necessary groundwork for BFT.

In Raft, transactions (in the form of proposals or configuration updates) are automatically routed by the ordering node
that receives the transaction to the current leader of that channel. This means that peers and applications do not need
to know who the leader node is at any particular time. Only the ordering nodes need to know.

4.9. The Ordering Service 81

hyperledger-fabricdocs Documentation, Release master

When the orderer validation checks have been completed, the transactions are ordered, packaged into blocks, consented
on, and distributed, as described in phase two of our transaction flow.

Architectural notes

How leader election works in Raft

Although the process of electing a leader happens within the orderer’s internal processes, it’s worth noting how the
process works.

Raft nodes are always in one of three states: follower, candidate, or leader. All nodes initially start out as a follower.
In this state, they can accept log entries from a leader (if one has been elected), or cast votes for leader. If no log entries
or heartbeats are received for a set amount of time (for example, five seconds), nodes self-promote to the candidate
state. In the candidate state, nodes request votes from other nodes. If a candidate receives a quorum of votes, then it is
promoted to a leader. The leader must accept new log entries and replicate them to the followers.

For a visual representation of how the leader election process works, check out The Secret Lives of Data.

Snapshots

If an ordering node goes down, how does it get the logs it missed when it is restarted?

While it’s possible to keep all logs indefinitely, in order to save disk space, Raft uses a process called “snapshotting”,
in which users can define how many bytes of data will be kept in the log. This amount of data will conform to a
certain number of blocks (which depends on the amount of data in the blocks. Note that only full blocks are stored in
a snapshot).

For example, let’s say lagging replica R1 was just reconnected to the network. Its latest block is 100. Leader L is at
block 196, and is configured to snapshot at amount of data that in this case represents 20 blocks. R1 would therefore
receive block 180 from L and then make a Deliver request for blocks 101 to 180. Blocks 180 to 196 would then
be replicated to R1 through the normal Raft protocol.

Kafka (deprecated in v2.x)

The other crash fault tolerant ordering service supported by Fabric is an adaptation of a Kafka distributed streaming
platform for use as a cluster of ordering nodes. You can read more about Kafka at the Apache Kafka Web site, but at
a high level, Kafka uses the same conceptual “leader and follower” configuration used by Raft, in which transactions
(which Kafka calls “messages”) are replicated from the leader node to the follower nodes. In the event the leader node
goes down, one of the followers becomes the leader and ordering can continue, ensuring fault tolerance, just as with
Raft.

The management of the Kafka cluster, including the coordination of tasks, cluster membership, access control, and
controller election, among others, is handled by a ZooKeeper ensemble and its related APIs.

Kafka clusters and ZooKeeper ensembles are notoriously tricky to set up, so our documentation assumes a working
knowledge of Kafka and ZooKeeper. If you decide to use Kafka without having this expertise, you should complete,
at a minimum, the first six steps of the Kafka Quickstart guide before experimenting with the Kafka-based ordering
service. You can also consult this sample configuration file for a brief explanation of the sensible defaults for Kafka
and ZooKeeper.

To learn how to bring up a Kafka-based ordering service, check out our documentation on Kafka.

82 Chapter 4. Key Concepts

http://thesecretlivesofdata.com/raft/
https://kafka.apache.org/intro
https://kafka.apache.org/quickstart
https://github.com/hyperledger/fabric/blob/release-1.1/bddtests/dc-orderer-kafka.yml
../kafka.html

hyperledger-fabricdocs Documentation, Release master

4.10 Smart Contracts and Chaincode

Audience: Architects, application and smart contract developers, administrators

From an application developer’s perspective, a smart contract, together with the ledger, form the heart of a Hyper-
ledger Fabric blockchain system. Whereas a ledger holds facts about the current and historical state of a set of business
objects, a smart contract defines the executable logic that generates new facts that are added to the ledger. A chain-
code is typically used by administrators to group related smart contracts for deployment, but can also be used for low
level system programming of Fabric. In this topic, we’ll focus on why both smart contracts and chaincode exist, and
how and when to use them.

In this topic, we’ll cover:
» What is a smart contract
* A note on terminology
» Smart contracts and the ledger
* How to develop a smart contract
e The importance of endorsement policies
* Valid transactions
* Channels and chaincode definitions
* Communicating between smart contracts

* What is system chaincode?

4.10.1 Smart contract

Before businesses can transact with each other, they must define a common set of contracts covering common terms,
data, rules, concept definitions, and processes. Taken together, these contracts lay out the business model that govern
all of the interactions between transacting parties.

Seller Organization Buyer Organization
query (car) :
get (car);

return car;

application: application:

PP transfer (car, buyer, seller): PP

seller = ORGL; get (ear); - b . seller = ORG2Z;

buyer = ORG2; car.owner = buyer; buyer = ORG1;
put (car) ;

transfer (CAR1, seller, buyer); transfer (CAR2, seller, buyer);

return car;

update (car, properties):
get (car) ;
car.colour
put (car) ;
return car;

properties.colour;

A smart contract defines the rules between different organizations in executable code. Applications invoke a smart
contract to generate transactions that are recorded on the ledger.

Using a blockchain network, we can turn these contracts into executable programs — known in the industry as smart
contracts — to open up a wide variety of new possibilities. That’s because a smart contract can implement the gov-

4.10. Smart Contracts and Chaincode 83

../ledger/ledger.html

hyperledger-fabricdocs Documentation, Release master

ernance rules for any type of business object, so that they can be automatically enforced when the smart contract is
executed. For example, a smart contract might ensure that a new car delivery is made within a specified timeframe,
or that funds are released according to prearranged terms, improving the flow of goods or capital respectively. Most
importantly however, the execution of a smart contract is much more efficient than a manual human business process.

In the diagram above, we can see how two organizations, ORG1 and ORG2 have defined a car smart contract to
query, transfer and update cars. Applications from these organizations invoke this smart contract to perform
an agreed step in a business process, for example to transfer ownership of a specific car from ORG1 to ORG2.

4.10.2 Terminology

Hyperledger Fabric users often use the terms smart contract and chaincode interchangeably. In general, a smart
contract defines the transaction logic that controls the lifecycle of a business object contained in the world state. It is
then packaged into a chaincode which is then deployed to a blockchain network. Think of smart contracts as governing
transactions, whereas chaincode governs how smart contracts are packaged for deployment.

vehicle | car contract insurance | policy contract
chaincode chaincode
boat contract liability contract
truck contract syndication contract

securitization contract

A smart contract is defined within a chaincode. Multiple smart contracts can be defined within the same chaincode.
When a chaincode is deployed, all smart contracts within it are made available to applications.

In the diagram, we can see a vehicle chaincode that contains three smart contracts: cars, boats and trucks. We
can also see an insurance chaincode that contains four smart contracts: policy, liability, syndication
and securitization. In both cases these contracts cover key aspects of the business process relating to vehicles
and insurance. In this topic, we will use the car contract as an example. We can see that a smart contract is a domain
specific program which relates to specific business processes, whereas a chaincode is a technical container of a group
of related smart contracts.

4.10.3 Ledger

At the simplest level, a blockchain immutably records transactions which update states in a ledger. A smart contract
programmatically accesses two distinct pieces of the ledger — a blockchain, which immutably records the history of
all transactions, and a world state that holds a cache of the current value of these states, as it’s the current value of an
object that is usually required.

Smart contracts primarily put, get and delete states in the world state, and can also query the immutable blockchain
record of transactions.

* A get typically represents a query to retrieve information about the current state of a business object.
* A put typically creates a new business object or modifies an existing one in the ledger world state.

* A delete typically represents the removal of a business object from the current state of the ledger, but not its
history.

84 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Smart contracts have many APIs available to them. Critically, in all cases, whether transactions create, read, update or
delete business objects in the world state, the blockchain contains an immutable record of these changes.

4.10.4 Development

Smart contracts are the focus of application development, and as we’ve seen, one or more smart contracts can be
defined within a single chaincode. Deploying a chaincode to a network makes all its smart contracts available to the
organizations in that network. It means that only administrators need to worry about chaincode; everyone else can
think in terms of smart contracts.

At the heart of a smart contract is a set of transaction definitions. For example, look at assetTransfer.js here,
where you can see a smart contract transaction that creates a new asset:

async CreateAsset (ctx, id, color, size, owner, appraisedvValue) {
const asset = {
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedvalue,
bi
return ctx.stub.putState(id, Buffer.from(JSON.stringify (asset)));

You can learn more about the Basic smart contract in the Writing your first application tutorial.

A smart contract can describe an almost infinite array of business use cases relating to immutability of data in multi-
organizational decision making. The job of a smart contract developer is to take an existing business process that
might govern financial prices or delivery conditions, and express it as a smart contract in a programming language
such as JavaScript, Go, or Java. The legal and technical skills required to convert centuries of legal language into
programming language is increasingly practiced by smart contract auditors. You can learn about how to design and
develop a smart contract in the Developing applications topic.

4.10.5 Endorsement

Associated with every chaincode is an endorsement policy that applies to all of the smart contracts defined within
it. An endorsement policy is very important; it indicates which organizations in a blockchain network must sign a
transaction generated by a given smart contract in order for that transaction to be declared valid.

4.10. Smart Contracts and Chaincode 85

../developapps/transactioncontext.html#structure
../ledger/ledger.html
https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/chaincode-javascript/lib/assetTransfer.js#L67
../write_first_app.html
../developapps/developing_applications.html

hyperledger-fabricdocs Documentation, Release master

Seller Organization Buyer Organization
query (car) :
get (car);
application: return car;

transfer (car, buyer, seller):
seller = ORGL;

get (car);
buyer = ORG2; _
car.owner = buyer;
transfer (CAR1l, seller, buyer);
put (car) ;

return car;
car interface:

update(car, properties):

get (car); Transactions:
car.colour = properties.colour; query

put (car); transfer
return car; update

Endorsement Policy:
ORG1 AND ORG2

Every smart contract has an endorsement policy associated with it. This endorsement policy identifies which orga-
nizations must approve transactions generated by the smart contract before those transactions can be identified as
valid.

An example endorsement policy might define that three of the four organizations participating in a blockchain net-
work must sign a transaction before it is considered valid. All transactions, whether valid or invalid are added to a
distributed ledger, but only valid transactions update the world state.

If an endorsement policy specifies that more than one organization must sign a transaction, then the smart contract
must be executed by a sufficient set of organizations in order for a valid transaction to be generated. In the example
above, a smart contract transaction to transfer a car would need to be executed and signed by both ORG1 and
ORG2 for it to be valid.

Endorsement policies are what make Hyperledger Fabric different to other blockchains like Ethereum or Bitcoin. In
these systems valid transactions can be generated by any node in the network. Hyperledger Fabric more realistically
models the real world; transactions must be validated by trusted organizations in a network. For example, a government
organization must sign a valid i ssueIdentity transaction, or both the buyer and seller of a car must sign a
car transfer transaction. Endorsement policies are designed to allow Hyperledger Fabric to better model these types
of real-world interactions.

Finally, endorsement policies are just one example of policy in Hyperledger Fabric. Other policies can be defined
to identify who can query or update the ledger, or add or remove participants from the network. In general, policies
should be agreed in advance by the consortium of organizations in a blockchain network, although they are not set
in stone. Indeed, policies themselves can define the rules by which they can be changed. And although an advanced
topic, it is also possible to define custom endorsement policy rules over and above those provided by Fabric.

4.10.6 Valid transactions

When a smart contract executes, it runs on a peer node owned by an organization in the blockchain network. The
contract takes a set of input parameters called the transaction proposal and uses them in combination with its program
logic to read and write the ledger. Changes to the world state are captured as a transaction proposal response (or just
transaction response) which contains a read-write set with both the states that have been read, and the new states
that are to be written if the transaction is valid. Notice that the world state is not updated when the smart contract
is executed!

86 Chapter 4. Key Concepts

../access_control.html#policies
../pluggable_endorsement_and_validation.html

hyperledger-fabricdocs Documentation, Release master

Seller organization car contract: Buyer organization

[oz |

query (car) : -
get (car) ; car interface:
return car;
Transactions:
transfer (car, buyer, seller): query
N N . transfer
application: get (car); e
car.owner = buyer; update
= : put (car) ;
selier RS t . Endorsement Policy:
buyer = ORG2; return carj;
ORG1 AND ORG2
transfer (CARl, seller, buyer);

car transfer transaction: Car transaction history

lc1]e2 ”tIB thli Jes]]
= | |

Car transaction history

[e1]e2 ||t!3 H 54 [es] es]
[— | |

identifier: t3

proposal:
input: {CAR1, ORGl, ORG2}
signature: input*ORG1

response:
i?{CARL: {owner:ORGZ) output: {CARI.owner=0RG1l, CARI.owner=0RG2} #|CARL: {owner:ORG2}
CARZ2: {owner:ORG2} signatures: CAR2: {owner:CRG2}
output signed by ORG1

output signed by ORG2

All transactions have an identifier, a proposal, and a response signed by a set of organizations. All transactions are
recorded on the blockchain, whether valid or invalid, but only valid transactions contribute to the world state.

Examine the car transfer transaction. You can see a transaction t3 for a car transfer between ORG1 and
ORG2. See how the transaction has input {CAR1, ORG1l, ORG2} and output {CARl.owner=0RGl, CARI.
owner=0RG2}, representing the change of owner from ORG1 to ORG2. Notice how the input is signed by the
application’s organization ORG1, and the output is signed by both organizations identified by the endorsement policy,
ORG1 and ORG2. These signatures were generated by using each actor’s private key, and mean that anyone in the
network can verify that all actors in the network are in agreement about the transaction details.

A transaction that is distributed to all peer nodes in the network is validated in two phases by each peer. Firstly, the
transaction is checked to ensure it has been signed by sufficient organizations according to the endorsement policy.
Secondly, it is checked to ensure that the current value of the world state matches the read set of the transaction when
it was signed by the endorsing peer nodes; that there has been no intermediate update. If a transaction passes both
these tests, it is marked as valid. All transactions are added to the blockchain history, whether valid or invalid, but
only valid transactions result in an update to the world state.

In our example, t 3 is a valid transaction, so the owner of CAR1 has been updated to ORG2. However, t 4 (not shown)
is an invalid transaction, so while it was recorded in the ledger, the world state was not updated, and CAR2 remains
owned by ORG2.

Finally, to understand how to use a smart contract or chaincode with world state, read the chaincode namespace topic.

4.10.7 Channels

Hyperledger Fabric allows an organization to simultaneously participate in multiple, separate blockchain networks
via channels. By joining multiple channels, an organization can participate in a so-called network of networks.
Channels provide an efficient sharing of infrastructure while maintaining data and communications privacy. They
are independent enough to help organizations separate their work traffic with different counterparties, but integrated
enough to allow them to coordinate independent activities when necessary.

4.10. Smart Contracts and Chaincode 87

../developapps/chaincodenamespace.html

hyperledger-fabricdocs Documentation, Release master

Seller Organization Buyer Organization

Endorsement Policy:J

A A ORG1 AND ORG2
application:
seller = ORG1; car contract:
buyer = ORG2;
transfer (CAR1, seller, buyer); transfer(car, ...):
application: .
insurance contract:
owner = ORGI1; .
i insure(car,...):
insurer = ORG3;
insure (CAR1l, owner, insurer); -
Endorsement Policy:
ORG3
Owner Organization Insurance Organization

A channel provides a completely separate communication mechanism between a set of organizations. When a chain-
code definition is committed to a channel, all the smart contracts within the chaincode are made available to the
applications on that channel.

While the smart contract code is installed inside a chaincode package on an organizations peers, channel members can
only execute a smart contract after the chaincode has been defined on a channel. The chaincode definition is a struct
that contains the parameters that govern how a chaincode operates. These parameters include the chaincode name,
version, and the endorsement policy. Each channel member agrees to the parameters of a chaincode by approving a
chaincode definition for their organization. When a sufficient number of organizations (a majority by default) have
approved to the same chaincode definition, the definition can be committed to the channel. The smart contracts inside
the chaincode can then be executed by channel members, subject to the endorsement policy specified in the chaincode
definition. The endorsement policy applies equally to all smart contracts defined within the same chaincode.

In the example above, a car contract is defined on the VEHICLE channel, and an insurance contract is defined on
the INSURANCE channel. The chaincode definition of car specifies an endorsement policy that requires both ORG1
and ORG2 to sign transactions before they can be considered valid. The chaincode definition of the insurance con-
tract specifies that only ORG3 is required to endorse a transaction. ORG1 participates in two networks, the VEHICLE
channel and the INSURANCE network, and can coordinate activity with ORG2 and ORG3 across these two networks.

The chaincode definition provides a way for channel members to agree on the governance of a chaincode before they
start using the smart contract to transact on the channel. Building on the example above, both ORG1 and ORG2 want to
endorse transactions that invoke the car contract. Because the default policy requires that a majority of organizations
approve a chaincode definition, both organizations need to approve an endorsement policy of AND { ORG1, ORG2}.
Otherwise, ORG1 and ORG2 would approve different chaincode definitions and would be unable to commit the chain-
code definition to the channel as a result. This process guarantees that a transaction from the car smart contract needs
to be approved by both organizations.

4.10.8 Intercommunication

A Smart Contract can call other smart contracts both within the same channel and across different channels. It this
way, they can read and write world state data to which they would not otherwise have access due to smart contract
namespaces.

There are limitations to this inter-contract communication, which are described fully in the chaincode namespace
topic.

88 Chapter 4. Key Concepts

../developapps/chaincodenamespace.html#cross-chaincode-access

hyperledger-fabricdocs Documentation, Release master

4.10.9 System chaincode

The smart contracts defined within a chaincode encode the domain dependent rules for a business process agreed
between a set of blockchain organizations. However, a chaincode can also define low-level program code which
corresponds to domain independent system interactions, unrelated to these smart contracts for business processes.

The following are the different types of system chaincodes and their associated abbreviations:

e _lifecycle runs in all peers and manages the installation of chaincode on your peers, the approval of chain-
code definitions for your organization, and the committing of chaincode definitions to channels. You can read
more about how _11i fecycle implements the Fabric chaincode lifecycle process.

* Lifecycle system chaincode (LSCC) manages the chaincode lifecycle for the 1.x releases of Fabric. This version
of lifecycle required that chaincode be instantiated or upgraded on channels. You can still use LSCC to manage
your chaincode if you have the channel application capability set to V1_4_x or below.

* Configuration system chaincode (CSCC) runs in all peers to handle changes to a channel configuration, such
as a policy update. You can read more about this process in the following chaincode topic.

* Query system chaincode (QSCC) runs in all peers to provide ledger APIs which include block query, transac-
tion query etc. You can read more about these ledger APIs in the transaction context topic.

* Endorsement system chaincode (ESCC) runs in endorsing peers to cryptographically sign a transaction re-
sponse. You can read more about how the ESCC implements this process.

* Validation system chaincode (VSCC) validates a transaction, including checking endorsement policy and read-
write set versioning. You can read more about the VSCC implements this process.

It is possible for low level Fabric developers and administrators to modify these system chaincodes for their own uses.
However, the development and management of system chaincodes is a specialized activity, quite separate from the
development of smart contracts, and is not normally necessary. Changes to system chaincodes must be handled with
extreme care as they are fundamental to the correct functioning of a Hyperledger Fabric network. For example, if
a system chaincode is not developed correctly, one peer node may update its copy of the world state or blockchain
differently compared to another peer node. This lack of consensus is one form of a ledger fork, a very undesirable
situation.

4.11 Fabric chaincode lifecycle

4.11.1 What is Chaincode?

Chaincode is a program, written in Go, Node.js, or Java that implements a prescribed interface. Chaincode runs in a
secured Docker container isolated from the endorsing peer process. Chaincode initializes and manages ledger state
through transactions submitted by applications.

A chaincode typically handles business logic agreed to by members of the network, so it may be considered as a “smart
contract”. Ledger updates created by a chaincode are scoped exclusively to that chaincode and can’t be accessed
directly by another chaincode. However, within the same network, given the appropriate permission a chaincode may
invoke another chaincode to access its state.

In this concept topic, we will explore chaincode through the eyes of a blockchain network operator rather than an
application developer. Chaincode operators can use this topic as a guide to how to use the Fabric chaincode lifecycle
to deploy and manage chaincode on their network.

4.11. Fabric chaincode lifecycle 89

../chaincode_lifecycle.html
../configtx.html#configuration-updates
../developapps/transactioncontext.html
../peers/peers.html#phase-1-proposal
../peers/peers.html#phase-3-validation
https://golang.org
https://nodejs.org
https://java.com/en/

hyperledger-fabricdocs Documentation, Release master

4.11.2 Deploying a chaincode

The Fabric chaincode lifecycle is a process that allows multiple organizations to agree on how a chaincode will be
operated before it can be used on a channel. A network operator would use the Fabric lifecycle to perform the
following tasks:

e Install and define a chaincode

» Upgrade a chaincode

* Deployment Scenarios

* Migrate to the new Fabric lifecycle

You can use the Fabric chaincode lifecycle by creating a new channel and setting the channel capabilities to V2_0. You
will not be able to use the old lifecycle to install, instantiate, or update a chaincode on channels with V2_0 capabilities
enabled. However, you can still invoke chaincode installed using the previous lifecycle model after you enable V2_0
capabilities. If you are upgrading from a v1.4.x network and need to edit your channel configurations to enable the
new lifecycle, check out Enabling the new chaincode lifecycle.

4.11.3 Install and define a chaincode

Fabric chaincode lifecycle requires that organizations agree to the parameters that define a chaincode, such as name,
version, and the chaincode endorsement policy. Channel members come to agreement using the following four steps.
Not every organization on a channel needs to complete each step.

1. Package the chaincode: This step can be completed by one organization or by each organization.

2. Install the chaincode on your peers: Every organization that will use the chaincode to endorse a transaction
or query the ledger needs to complete this step.

3. Approve a chaincode definition for your organization: Every organization that will use the chaincode needs
to complete this step. The chaincode definition needs to be approved by a sufficient number of organizations to
satisfy the channel’s LifecycleEndorsment policy (a majority, by default) before the chaincode can be started on
the channel.

4. Commit the chaincode definition to the channel: The commit transaction needs to be submitted by one orga-
nization once the required number of organizations on the channel have approved. The submitter first collects
endorsements from enough peers of the organizations that have approved, and then submits the transaction to
commit the chaincode definition.

This topic provides a detailed overview of the operations of the Fabric chaincode lifecycle rather than the specific
commands. To learn more about how to use the Fabric lifecycle using the Peer CLI, see the Deploying a smart
contract to a channel tutorial or the peer lifecycle command reference.

Step One: Packaging the smart contract

Chaincode needs to be packaged in a tar file before it can be installed on your peers. You can package a chaincode using
the Fabric peer binaries, the Node Fabric SDK, or a third party tool such as GNU tar. When you create a chaincode
package, you need to provide a chaincode package label to create a succinct and human readable description of the
package.

If you use a third party tool to package the chaincode, the resulting file needs to be in the format below. The Fabric
peer binaries and the Fabric SDKs will automatically create a file in this format.

* The chaincode needs to be packaged in a tar file, ending with a . tar . gz file extension.

 The tar file needs to contain two files (no directory): a metadata file “metadata.json” and another tar “code.tar.gz”
containing the chaincode files.

920 Chapter 4. Key Concepts

./enable_cc_lifecycle.html
deploy_chaincode.html
deploy_chaincode.html
commands/peerlifecycle.html

hyperledger-fabricdocs Documentation, Release master

* “metadata.json” contains JSON that specifies the chaincode language, code path, and package label. You can
see an example of a metadata file below:

{"Path":"fabric-samples/asset-transfer-basic/chaincode-go", "Type":"golang", "Label
—":"basicvl"}

4)

Pearl Peer2 Peerl Peerd

Chaincode package Chaincode package

Package_Label: Package_Label:
U p— — -/

The chaincode is packaged separately by Orgl and Org2. Both organizations use MYCC_I as their package label in
order to identify the package using the name and version. It is not necessary for organizations to use the same package
label.

Step Two: Install the chaincode on your peers

You need to install the chaincode package on every peer that will execute and endorse transactions. Whether using the
CLI or an SDK, you need to complete this step using your Peer Administrator. Your peer will build the chaincode
after the chaincode is installed, and return a build error if there is a problem with your chaincode. It is recommended
that organizations only package a chaincode once, and then install the same package on every peer that belongs to their
org. If a channel wants to ensure that each organization is running the same chaincode, one organization can package
a chaincode and send it to other channel members out of band.

A successful install command will return a chaincode package identifier, which is the package label combined with a
hash of the package. This package identifier is used to associate a chaincode package installed on your peers with a
chaincode definition approved by your organization. Save the identifier for next step. You can also find the package
identifier by querying the packages installed on your peer using the Peer CLI.

'\

-

Chaincode
package

Package ID:
MYCC_1:hash MYCE_1:hash

- S

A peer administrator from Orgl and Org2 installs the chaincode package MYCC_I on the peers joined to the channel.
Installing the chaincode package builds the chaincode and creates a package identifier of MYCC_I :hash.

4.11. Fabric chaincode lifecycle 91

hyperledger-fabricdocs Documentation, Release master

Step Three: Approve a chaincode definition for your organization

The chaincode is governed by a chaincode definition. When channel members approve a chaincode definition, the
approval acts as a vote by an organization on the chaincode parameters it accepts. These approved organization
definitions allow channel members to agree on a chaincode before it can be used on a channel. The chaincode definition
includes the following parameters, which need to be consistent across organizations:

e Name: The name that applications will use when invoking the chaincode.

* Version: A version number or value associated with a given chaincodes package. If you upgrade the chaincode
binaries, you need to change your chaincode version as well.

* Sequence: The number of times the chaincode has been defined. This value is an integer, and is used to
keep track of chaincode upgrades. For example, when you first install and approve a chaincode definition, the
sequence number will be 1. When you next upgrade the chaincode, the sequence number will be incremented
to 2.

* Endorsement Policy: Which organizations need to execute and validate the transaction output. The endorse-
ment policy can be expressed as a string passed to the CLI, or it can reference a policy in the channel config.
By default, the endorsement policy is set to Channel/Application/Endorsement, which defaults to
require that a majority of organizations in the channel endorse a transaction.

* Collection Configuration: The path to a private data collection definition file associated with your chaincode.
For more information about private data collections, see the Private Data architecture reference.

ESCC/VSCC Plugins: The name of a custom endorsement or validation plugin to be used by this chaincode.

« Initialization: If you use the low level APIs provided by the Fabric Chaincode Shim API, your chaincode needs
to contain an Init function that is used to initialize the chaincode. This function is required by the chaincode
interface, but does not necessarily need to invoked by your applications. When you approve a chaincode defini-
tion, you can specify whether Init must be called prior to Invokes. If you specify that Init is required, Fabric
will ensure that the Init function is invoked before any other function in the chaincode and is only invoked
once. Requesting the execution of the Init function allows you to implement logic that is run when the chain-
code is initialized, for example to set some initial state. You will need to call Init to initialize the chaincode
every time you increment the version of a chaincode, assuming the chaincode definition that increments the
version indicates that Init is required.

If you are using the Fabric peer CLI, you can use the ——init-required flag when you approve and commit
the chaincode definition to indicate that the Init function must be called to initialize the new chaincode ver-
sion. To call Init using the Fabric peer CLI, use the peer chaincode invoke command and pass the
——isInit flag.

If you are using the Fabric contract API, you do not need to include an Init method in your chaincode.
However, you can still use the ——init-required flag to request that the chaincode be initialized by a call
from your applications. If you use the ——init-required flag, you will need to pass the ——isInit flag
or parameter to a chaincode call in order to initialize the chaincode every time you increment the chaincode
version. You can pass ——isInit and initialize the chaincode using any function in your chaincode.

The chaincode definition also includes the Package Identifier. This is a required parameter for each organization that
wants to use the chaincode. The package ID does not need to be the same for all organizations. An organization can
approve a chaincode definition without installing a chaincode package or including the identifier in the definition.

Each channel member that wants to use the chaincode needs to approve a chaincode definition for their organization.
This approval needs to be submitted to the ordering service, after which it is distributed to all peers. This approval
needs to be submitted by your Organization Administrator. After the approval transaction has been successfully
submitted, the approved definition is stored in a collection that is available to all the peers of your organization. As a
result you only need to approve a chaincode for your organization once, even if you have multiple peers.

92 Chapter 4. Key Concepts

https://hyperledger-fabric.readthedocs.io/en/latest/private-data-arch.html

hyperledger-fabricdocs Documentation, Release master

~

Chaincode definition Chaincode definition

Mame: MYCC, Version: 1,
End Palicy: (2 of 2}, Seq 1
Package ID: MYCC_1-hash

Name: MYCC, Version: 1,

End Policy: [2 of 2), Seq 1
Package ID: MYCC_1-hash

Chaincode Chaincade Chaincode
package package package package
P Iz Package 10: Package 1D: Package ID:
ackage MYCC_1:hash MYCC_1:hash Y

\mcr._:;m:h MIYCE_1:hash j

An organization administrator from Orgl and Org2 approve the chaincode definition of MYCC for their organization.
The chaincode definition includes the chaincode name, version, and the endorsement policy, among other fields. Since
both organizations will use the chaincode to endorse transactions, the approved definitions for both organizations
need to include the packagelD.

Step Four: Commit the chaincode definition to the channel

Once a sufficient number of channel members have approved a chaincode definition, one organization can commit
the definition to the channel. You can use the checkcommitreadiness command to check whether committing
the chaincode definition should be successful based on which channel members have approved a definition before
committing it to the channel using the peer CLI. The commit transaction proposal is first sent to the peers of channel
members, who query the chaincode definition approved for their organizations and endorse the definition if their
organization has approved it. The transaction is then submitted to the ordering service, which then commits the
chaincode definition to the channel. The commit definition transaction needs to be submitted as the Organization
Administrator.

The number of organizations that need to approve a definition before it can be successfully committed to the channel
is governed by the Channel/Application/LifecycleEndorsement policy. By default, this policy requires
that a majority of organizations in the channel endorse the transaction. The LifecycleEndorsement policy is separate
from the chaincode endorsement policy. For example, even if a chaincode endorsement policy only requires signatures
from one or two organizations, a majority of channel members still need to approve the chaincode definition according
to the default policy. When committing a channel definition, you need to target enough peer organizations in the
channel to satisfy your LifecycleEndorsement policy. You can learn more about the Fabric chaincode lifecycle policies
in the Policies concept topic.

You can also set the Channel/Application/LifecycleEndorsement policy to be a signature policy and
explicitly specify the set of organizations on the channel that can approve a chaincode definition. This allows you
to create a channel where a select number of organizations act as chaincode administrators and govern the business
logic used by the channel. You can also use a signature policy if your channel has a large number Idemix organiza-
tions, which cannot approve chaincode definitions or endorse chaincode and may prevent the channel from reaching a
majority as a result.

4.11. Fabric chaincode lifecycle 93

policies/policies.html

hyperledger-fabricdocs Documentation, Release master

Chaincode definition

Name: MYCC, Version 1,
End Policy: (2 of 2), Seq 1

<::I Channel :I__""'.....l'
| |

Chaincode definition Chaincode definition

Mame: MYCL, Version: 1,
End Policy= (2 of 2], Seq 1
Package ID: MYCC_1thash

Mame: MYCC, Version: 1,

End Policy: (2 of 2], Seq 1
Package ID: MYCC_1:hash

Chaincode Chaincode thaincode Chaincode
package package package pachage
Package ID: Package ID: Package ID: Package ID:
MYCE_1-hash MYEC_1:hash MYCE_1:hash MYCC_1thash

One organization administrator from Orgl or Org2 commits the chaincode definition to the channel. The definition on
the channel does not include the packagelD.

An organization can approve a chaincode definition without installing the chaincode package. If an organization does
not need to use the chaincode, they can approve a chaincode definition without a package identifier to ensure that the
Lifecycle Endorsement policy is satisfied.

After the chaincode definition has been committed to the channel, the chaincode container will launch on all of the
peers where the chaincode has been installed, allowing channel members to start using the chaincode. It may take
a few minutes for the chaincode container to start. You can use the chaincode definition to require the invocation of
the Init function to initialize the chaincode. If the invocation of the Init function is requested, the first invoke
of the chaincode must be a call to the Init function. The invoke of the Init function is subject to the chaincode
endorsement policy.

Chaincode definition

Mame: MYCC, Version 1,

End Policy: (2 of 2), Seq 1

< Channel :I__::h
I | [

thaincode definition Chaincode definition

Mame: MYCL, Version: 1,
End Policy= (2 of 2], Seq 1
Package ID: MYCC_1thash

Chaincode Chaincode
container container

Mame: MYCC, Version: 1,

End Policy: (2 af 2), Seq 1
Package ID: MYCC_1:hash

container

Mame: MY MName: MYCC

thaincode Chaincode thaincode

package package package
Package ID: Package ID: Package ID:
MYCE_1-hash MYCC_L:hash MYCE_1-hash

Once MYCC is defined on the channel, Orgl and Org2 can start using the chaincode. The first invoke of the chaincode

94 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

on each peer starts the chaincode container on that peer.

4.11.4 Upgrade a chaincode

You can upgrade a chaincode using the same Fabric lifecycle process as you used to install and start the chaincode. You
can upgrade the chaincode binaries, or only update the chaincode policies. Follow these steps to upgrade a chaincode:

1. Repackage the chaincode: You only need to complete this step if you are upgrading the chaincode binaries.

Package |D:
MIYCE_1: hash

Package ID:
MYCE_Lhash

~

chaincode
packages

Package ID:
MYCE_1:hash

Chaintade package

Package_Label:

\ MYEC_2

Chaincode package

Package_Label:
MYCC_2 /

Orgl and Org2 upgrade the chaincode binaries and repackage the chaincode. Both organizations use a different

package label.

2. Install the new chaincode package on your peers: Once again, you only need to complete this step if you are
upgrading the chaincode binaries. Installing the new chaincode package will generate a package ID, which you
will need to pass to the new chaincode definition. You also need to change the chaincode version, which is used
by the lifecycle process to track if the chaincode binaries have been upgraded.

Chaincode definition

Mame: MYCE, Version: 1,
End Policy: (2 of 2], Seq 1
Package 10 MYCC_1:hash

Chaincode
container
Mame: MYCC

Mersion 1

Chaincode
container

MYCC_Lhash

~

Chaincode definition

Mame: MYCE, Version: 1,
End Policy: [2 of 2, Seq 1
Package I0: MYCC_1:hash

L/

Orgl and Org2 install the new package on their peers. The installation creates a new packagelD.

3. Approve a new chaincode definition: If you are upgrading the chaincode binaries, you need to update the
chaincode version and the package ID in the chaincode definition. You can also update your chaincode endorse-
ment policy without having to repackage your chaincode binaries. Channel members simply need to approve a
definition with the new policy. The new definition needs to increment the sequence variable in the definition by

one.

4.11. Fabric chaincode lifecycle

95

hyperledger-fabricdocs Documentation, Release master

Chaincode definition Chaincode definition

Mame: MYCC, Version: 2,
End Palicy: (2 of 2], Seq 2
Package ID: MYCC_2:hath

MName: MYCC, Version: 2, thaincode thaincode
End Policy: (2 of Z), Seq 2 container container

/

Organization administrators from Orgl and Org2 approve the new chaincode definition for their respective
organizations. The new definition references the new packagelD and changes the chaincode version. Since this
is the first update of the chaincode, the sequence is incremented from one to two.

4. Commit the definition to the channel: When a sufficient number of channel members have approved the new
chaincode definition, one organization can commit the new definition to upgrade the chaincode definition to the
channel. There is no separate upgrade command as part of the lifecycle process.

Chaincode definition

Mame: MYCC, Version 2,
End Paolicy: (2 of 2), Seq 2

"':::I Channel :|:="
1 |

Chaincode definition Chaineode definition

Mame: MYCC, Version: 2, Mame: MYOL, Version: 2,

Chaincode Chaincode
e End Poliey: (2 of 2}, Seq 2 —— J——— Endl Palicy: (2 of 2], Seq 2
Marme: MYCE Package ID: MYCC_Z: hash Mame: MY Package ID: MYCC_2: hash
Mersion 1

An organization administrator from Orgl or Org2 commits the new chaincode definition to the channel.

After you commit the chaincode definition, a new chaincode container will launch with the code from the upgraded
chaincode binaries. If you requested the execution of the Init function in the chaincode definition, you need to
initialize the upgraded chaincode by invoking the Init function again after the new definition is successfully com-
mitted. If you updated the chaincode definition without changing the chaincode version, the chaincode container will
remain the same and you do not need to invoke Init function.

96 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

/ — \

Mame: MYCE, Version 2,
End Palicy: (2 of 2), Seq 2

::I Channel :|:=
| |

Chaincode definition Chaincode definition

Mame: MYCC, Version: 2,
End Palicy: (2 af 2), Seq 2
Package ID: MYCC_2: hash

Mame: MYCC, Version: 2,
End Pelicy: (2 af 2), Seq 2
Package ID: MYCC_2: hash

Chaincode thaincode

container container
Mame: MYCC
Version 2

Marme: MYCC

Once the new definition has been committed to the channel, each peer will automatically start the new chaincode
container.

The Fabric chaincode lifecycle uses the sequence in the chaincode definition to keep track of upgrades. All channel
members need to increment the sequence number by one and approve a new definition to upgrade the chaincode.
The version parameter is used to track the chaincode binaries, and needs to be changed only when you upgrade the
chaincode binaries.

4.11.5 Deployment scenarios

The following examples illustrate how you can use the Fabric chaincode lifecycle to manage channels and chaincode.

Joining a channel

A new organization can join a channel with a chaincode already defined, and start using the chaincode after installing
the chaincode package and approving the chaincode definition that has already been committed to the channel.

4.11. Fabric chaincode lifecycle 97

hyperledger-fabricdocs Documentation, Release master

Chaincode definition

Mame: MYCC, Version 1,
End Policy: |2 of 3), Seq 1

< Channel "
Chaincode Chaincade
ntainer Chaincode comtainer Chaincode Chaincade
definition definition definition
Mame: MYOC Hame: MYCC
Marme: MYCC, MName: MYCC, MName: MYCC,
Werdian: 1 Version: 1, Werddon: 1,
of : End Pal: [2 of 3),
Chaincade End Pol: (3 of 3), |- @ End Pal: (3 of 3], ok 2
package Seq:l Seq 1 Chaincode pa.::: o
Package ID: Packape ID: package M"m-;u;.
Package ID: MYEE_1:hash - — BAYCC_1:hash
MYCC_1:hash = Patkage ID:
MYCC_1:hash

Org3 joins the channel and approves the same chaincode definition that was previously committed to the channel by
Orgl and Org2.

After approving the chaincode definition, the new organization can start using the chaincode after the package has
been installed on their peers. The definition does not need to be committed again. If the endorsement policy is set the
default policy that requires endorsements from a majority of channel members, then the endorsement policy will be
updated automatically to include the new organization.

Chaincode definition

Name: MYCC, Version 1,
Endl Policy: (2 of 3), Seq 1

- Channel -

Thaincode
container Chaincode
m definition
Mame: MYCE
Narme: NIYEL, Mame: MYCC,
Version: 1, rston 1,
r— End Pol: (3 of 3], End Pok (2 of 5),
package Seqi 1 Chaincode Seqgl
Package ID: package Packags
. - MYCE dchest MYCC_1:hash
wckage I0: ; Package ID:
MYCC_1:hash MYCC_1:hash S

The chaincode container will start after the first invoke of the chaincode on the Org3 peer.

Updating an endorsement policy

You can use the chaincode definition to update an endorsement policy without having to repackage or re-install the
chaincode. Channel members can approve a chaincode definition with a new endorsement policy and commit it to the

98 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

channel.

Chaincode definition

Mame: MYCC, Version 1,
Enl Policy: (2 of 3), Seq 1

il Channel -

thaincode
Chaincode Chaincade container Chaincode
definition definition definition
Mame: MYCC
Marme: MYCC, Mame: MYCL, Mame: MYCC,
Versian: 1, Version: 1, Version: 1,
Chainoode End Pol: |3 of 3), 12 gl End Pol: [3 of 3], End Pal- (3 of 3),
package Seq: 2 Chaincode Seq 2
Package ID: package Package ID:
Paciage |D: MYCC_1thash MYCC_1:hash
MYCL_1:hash Package ID:
MYOC_1:hash

Orgl, Org2, and Org3 approve a new endorsement policy requiring that all three organizations endorse a transaction.
They increment the definition sequence from one to two, but do not need to update the chaincode version.

The new endorsement policy will take effect after the new definition is committed to the channel. Channel members
do not have to restart the chaincode container by invoking the chaincode or executing the Init function in order to
update the endorsement policy.

Chaincode definition

Mame: MYCC, Version 1,
Envdl Policy: (3 of 3), Seq 2

- Channel -

Chaincode

Chaincade
mntainer Chaincode cantainer Chaincode
definition definitian
Mame: MYOC
Marne: BAYOC
Marma: MYCE, Mame: MYOC,
Version: 1, Version: 1,
Chaintods End Pol: |3 of 3), End Pal: (3 of 3),
package Seq: 2 Chaintade Seg 2
Package D package Package 1D:
Package ID: MYCC_1-hash MYCC_1:hash
“has - Package ID:
M'I'CC_LM!H M'ﬂr_l.lﬂ!h Tk

One organization commits the new chaincode definition to the channel to update the endorsement policy.

Approving a definition without installing the chaincode

You can approve a chaincode definition without installing the chaincode package. This allows you to endorse a
chaincode definition before it is committed to the channel, even if you do not want to use the chaincode to endorse

4.11. Fabric chaincode lifecycle 99

hyperledger-fabricdocs Documentation, Release master

transactions or query the ledger. You need to approve the same parameters as other members of the channel, but not
need to include the packagelD as part of the chaincode definition.

e — N

Mame: MYCC, Version 1,
End Paolicy: (2 of 3), Seq 1

— Channel i
Chaincode
mntainer Eﬂh‘lb:: Chaincode
— efinit definition
”‘“'"*:::E:' Name: MYCE,
bl Version: 4,
Chaincade End ':;1_21“ 3, End Pal: (2 of 3),
y :
Package Package ID: - Se 1
Package ID: MYCC_1:hash .
MYCC_1:hash MYCC_1:hash

Org3 does not install the chaincode package. As a result, they do not need to provide a packagelD as part of chaincode
definition. However, Org3 can still endorse the definition of MYCC that has been committed to the channel.

One organization disagrees on the chaincode definition

An organization that does not approve a chaincode definition that has been committed to the channel cannot use the
chaincode. Organizations that have either not approved a chaincode definition, or approved a different chaincode
definition will not be able to execute the chaincode on their peers.

Chaincode definition

MName: MYCC, Version 1,
End Policy:(2 of 3, Seq 1

- Channel >

thaincode
container Chaincode
m definition
Mame: MYCC
Narme: MYEE, Mame: MYCC,
Version: 1, raton 1,
Fr— End Pol: (2 of 3], SRR
package Seqil Chaincode Seqgl
Package ID: package Package
. o MYCE dchest MYCC_L:hash
ackage I0:) Package ID:
MYCE_1:hash MYCC_1:hash T

Org3 approves a chaincode definition with a different endorsement policy than Orgl and Org2. As a result, Org3
cannot use the MYCC chaincode on the channel. However, Orgl or Org2 can still get enough endorsements to commit

100 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

the definition to the channel and use the chaincode. Transactions from the chaincode will still be added to the ledger
and stored on the Org3 peer. However, the Org3 will not be able to endorse transactions.

An organization can approve a new chaincode definition with any sequence number or version. This allows you to
approve the definition that has been committed to the channel and start using the chaincode. You can also approve a
new chaincode definition in order to correct any mistakes made in the process of approving or packaging a chaincode.

The channel does not agree on a chaincode definition

If the organizations on a channel do not agree on a chaincode definition, the definition cannot be committed to the
channel. None of the channel members will be able to use the chaincode.

Chaincode definition

el Channel i

Chaincode thaincode
Chaincode container Chaincaode container Chaincode
definition definition definition
Marme: MYCC, Mame: MYCC, MName: MYCC,
Version: 2, Mersion: 2 Version: 1,
Chadntsde End Pol: (1 of 3], 1. @ End Pol: (2 of 3), End Pal: (3 of 3),
— Seq:3 Seqd Chaincade Seqgl
L b e e
has
P Io: wl Package ID: _
MYCC_1:hash Packcage ID:
MYEC_1:hash

Orgl, Org2, and Org3 all approve different chaincode definitions. As a result, no member of the channel can get
enough endorsements to commit a chaincode definition to the channel. No channel member will be able to use the
chaincode.

Organizations install different chaincode packages

Each organization can use a different packageID when they approve a chaincode definition. This allows channel
members to install different chaincode binaries that use the same endorsement policy and read and write to data in the
same chaincode namespace.

Organizations can use this capability to install smart contracts that contain business logic that is specific to their
organization. Each organization’s smart contract could contain additional validation that the organization requires
before their peers endorse a transaction. Each organization can also write code that helps integrate the smart contract
with data from their existing systems.

4.11. Fabric chaincode lifecycle 101

hyperledger-fabricdocs Documentation, Release master

Chaincode definition

Name: MYOC, Version 1,
End Policy: |1 of 2], Seq 1

Channel

Chaincode
comtainer

Chaineode package

Package |D:
MYCC_orgl:hash

Chaincode definition

Mame: MYCC, Version: 1,

End Pol {1 of 2, Seq: 1
Package ID:

MYCC_ orglhash

container

Package ID:

Chaincede package

MYCC_org2- hash

Chaincode definition

Name: MYCC, Version: 1,
End Pol: [1 of 2), Seq: 1

Package ID:
MYCC_org?-hash

Orgl and Org2 each install versions of the MYCC chaincode containing business logic that is specific to their organi-

zation.

Creating multiple chaincodes using one package

You can use one chaincode package to create multiple chaincode instances on a channel by approving and committing
multiple chaincode definitions. Each definition needs to specify a different chaincode name. This allows you to run
multiple instances of a smart contract on a channel, but have the contract be subject to different endorsement policies.

haincode definition

Name: MYOCL, Version 1,
End Policy: [1 of 2], Seq 1

Chaincode definition

Name: MYOC2E, Version 1,
End Policy: (2 of 2}, Seq 1

Package ID: MYCC_1:-hash

(haincode definition

Narme: MYCC2, Version: 1,
End Pol: |2 of 2], Seq 1
Package ID: MYCC_1:-hash

Channel -
Chancode delinition
— Chaincode definition ——
container Name: MYCCL, Version: 1, container Mame: MYCCL, Version: 1,
) End Pol: [1af 2), Seq 1
Name: MYCC2 e Name: MYCC2

Package ID: MYCC_1:hash

Chaincade Chaincade definitien
package
Mame: MYCC2, Version: 1,
Package ID: End Pal: (2 of 2), Seq: 1
MYCC_1:hash Package |D: MYCC_L:hash

102

Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Orgl and Org2 use the MYCC_I chaincode package to approve and commit two different chaincode definitions. As a
result, both peers have two chaincode containers running on their peers. MYCCI has an endorsement policy of 1 out
of 2, while MYCC2 has an endorsement policy of 2 out of 2.

4.11.6 Migrate to the new Fabric lifecycle

For information about migrating to the new lifecycle, check out Considerations for getting to v2.0.

If you need to update your channel configurations to enable the new lifecycle, check out Enabling the new chaincode
lifecycle.

4.11.7 More information

You can watch video below to learn more about the motivation of the new Fabric chaincode lifecycle and how it is
implemented.

4.12 Private data

4.12.1 What is private data?

In cases where a group of organizations on a channel need to keep data private from other organizations on that
channel, they have the option to create a new channel comprising just the organizations who need access to the data.
However, creating separate channels in each of these cases creates additional administrative overhead (maintaining
chaincode versions, policies, MSPs, etc), and doesn’t allow for use cases in which you want all channel participants to
see a transaction while keeping a portion of the data private.

That’s why Fabric offers the ability to create private data collections, which allow a defined subset of organizations
on a channel the ability to endorse, commit, or query private data without having to create a separate channel.

4.12.2 What is a private data collection?

A collection is the combination of two elements:

1. The actual private data, sent peer-to-peer via gossip protocol to only the organization(s) authorized to see it.
This data is stored in a private state database on the peers of authorized organizations, which can be accessed
from chaincode on these authorized peers. The ordering service is not involved here and does not see the private
data. Note that because gossip distributes the private data peer-to-peer across authorized organizations, it is
required to set up anchor peers on the channel, and configure CORE_PEER_GOSSIP_EXTERNALENDPOINT
on each peer, in order to bootstrap cross-organization communication.

2. A hash of that data, which is endorsed, ordered, and written to the ledgers of every peer on the channel. The
hash serves as evidence of the transaction and is used for state validation and can be used for audit purposes.

The following diagram illustrates the ledger contents of a peer authorized to have private data and one which is not.

4.12. Private data 103

./upgrade_to_newest_version.html#chaincode-lifecycle
./enable_cc_lifecycle.html
./enable_cc_lifecycle.html
../gossip.html

hyperledger-fabricdocs Documentation, Release master

Peerl

Authorized Peer Unauthorized Peer

k1, secret value

J

channell

Collection members may decide to share the private data with other parties if they get into a dispute or if they want to
transfer the asset to a third party. The third party can then compute the hash of the private data and see if it matches
the state on the channel ledger, proving that the state existed between the collection members at a certain point in time.

In some cases, you may decide to have a set of collections each comprised of a single organization. For example an
organization may record private data in their own collection, which could later be shared with other channel members
and referenced in chaincode transactions. We’ll see examples of this in the sharing private data topic below.

When to use a collection within a channel vs. a separate channel
* Use channels when entire transactions (and ledgers) must be kept confidential within a set of organizations that
are members of the channel.

* Use collections when transactions (and ledgers) must be shared among a set of organizations, but when only
a subset of those organizations should have access to some (or all) of the data within a transaction. Addition-
ally, since private data is disseminated peer-to-peer rather than via blocks, use private data collections when
transaction data must be kept confidential from ordering service nodes.

4.12.3 A use case to explain collections

Consider a group of five organizations on a channel who trade produce:
* A Farmer selling his goods abroad
* A Distributor moving goods abroad

* A Shipper moving goods between parties

A Wholesaler purchasing goods from distributors
* A Retailer purchasing goods from shippers and wholesalers

The Distributor might want to make private transactions with the Farmer and Shipper to keep the terms of the trades
confidential from the Wholesaler and the Retailer (so as not to expose the markup they’re charging).

104 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

The Distributor may also want to have a separate private data relationship with the Wholesaler because it charges
them a lower price than it does the Retailer.

The Wholesaler may also want to have a private data relationship with the Retailer and the Shipper.

Rather than defining many small channels for each of these relationships, multiple private data collections (PDC) can
be defined to share private data between:

1. PDC1: Distributor, Farmer and Shipper
2. PDC2: Distributor and Wholesaler
3. PDC3: Wholesaler, Retailer and Shipper

Private data collections
(PDC)

a

Wholesal
\ iRt esler e /

Using this example, peers owned by the Distributor will have multiple private databases inside their ledger which
includes the private data from the Distributor, Farmer and Shipper relationship and the Distributor and Wholesaler
relationship.

4.12. Private data 105

hyperledger-fabricdocs Documentation, Release master

Distributor-Farmer-
Shipper

Private State
Distributor-Wholesaler

channell

4.12.4 Transaction flow with private data

When private data collections are referenced in chaincode, the transaction flow is slightly different in order to protect
the confidentiality of the private data as transactions are proposed, endorsed, and committed to the ledger.

For details on transaction flows that don’t use private data refer to our documentation on transaction flow.

1.

The client application submits a proposal request to invoke a chaincode function (reading or writing private data)
to endorsing peers which are part of authorized organizations of the collection. The private data, or data used to
generate private data in chaincode, is sent in a t ransient field of the proposal.

The endorsing peers simulate the transaction and store the private data in a transient data store (a
temporary storage local to the peer). They distribute the private data, based on the collection policy, to authorized
peers via gossip.

The endorsing peer sends the proposal response back to the client. The proposal response includes the endorsed
read/write set, which includes public data, as well as a hash of any private data keys and values. No private data
is sent back to the client. For more information on how endorsement works with private data, click here.

The client application submits the transaction (which includes the proposal response with the private data hashes)
to the ordering service. The transactions with the private data hashes get included in blocks as normal. The
block with the private data hashes is distributed to all the peers. In this way, all peers on the channel can validate
transactions with the hashes of the private data in a consistent way, without knowing the actual private data.

At block commit time, authorized peers use the collection policy to determine if they are authorized to have
access to the private data. If they do, they will first check their local transient data store to determine
if they have already received the private data at chaincode endorsement time. If not, they will attempt to pull
the private data from another authorized peer. Then they will validate the private data against the hashes in the
public block and commit the transaction and the block. Upon validation/commit, the private data is moved to
their copy of the private state database and private writeset storage. The private data is then deleted from the
transient data store.

106

Chapter 4. Key Concepts

../txflow.html
../gossip.html
../private-data-arch.html#endorsement

hyperledger-fabricdocs Documentation, Release master

4.12.5 Sharing private data

In many scenarios private data keys/values in one collection may need to be shared with other channel members or
with other private data collections, for example when you need to transact on private data with a channel member or
group of channel members who were not included in the original private data collection. The receiving parties will
typically want to verify the private data against the on-chain hashes as part of the transaction.

There are several aspects of private data collections that enable the sharing and verification of private data:

* First, you don’t necessarily have to be a member of a collection to write to a key in a collection, as long as
the endorsement policy is satisfied. Endorsement policy can be defined at the chaincode level, key level (using
state-based endorsement), or collection level (starting in Fabric v2.0).

» Second, starting in v1.4.2 there is a chaincode API GetPrivateDataHash() that allows chaincode on non-member
peers to read the hash value of a private key. This is an important feature as you will see later, because it allows
chaincode to verify private data against the on-chain hashes that were created from private data in previous
transactions.

This ability to share and verify private data should be considered when designing applications and the associated
private data collections. While you can certainly create sets of multilateral private data collections to share data
among various combinations of channel members, this approach may result in a large number of collections that
need to be defined. Alternatively, consider using a smaller number of private data collections (e.g. one collection per
organization, or one collection per pair of organizations), and then sharing private data with other channel members, or
with other collections as the need arises. Starting in Fabric v2.0, implicit organization-specific collections are available
for any chaincode to utilize, so that you don’t even have to define these per-organization collections when deploying
chaincode.

Private data sharing patterns

When modeling private data collections per organization, multiple patterns become available for sharing or transferring
private data without the overhead of defining many multilateral collections. Here are some of the sharing patterns that
could be leveraged in chaincode applications:

 Use a corresponding public key for tracking public state - You can optionally have a matching public key for
tracking public state (e.g. asset properties, current ownership. etc), and for every organization that should have
access to the asset’s corresponding private data, you can create a private key/value in each organization’s private
data collection.

* Chaincode access control - You can implement access control in your chaincode, to specify which clients can
query private data in a collection. For example, store an access control list for a private data collection key or
range of keys, then in the chaincode get the client submitter’s credentials (using GetCreator() chaincode API
or CID library API GetID() or GetMSPID()), and verify they have access before returning the private data.
Similarly you could require a client to pass a passphrase into chaincode, which must match a passphrase stored
at the key level, in order to access the private data. Note, this pattern can also be used to restrict client access to
public state data.

» Sharing private data out of band - As an off-chain option, you could share private data out of band with
other organizations, and they can hash the key/value to verify it matches the on-chain hash by using GetPri-
vateDataHash() chaincode API. For example, an organization that wishes to purchase an asset from you may
want to verify an asset’s properties and that you are the legitimate owner by checking the on-chain hash, prior
to agreeing to the purchase.

» Sharing private data with other collections - You could ‘share’ the private data on-chain with chaincode that
creates a matching key/value in the other organization’s private data collection. You’d pass the private data
key/value to chaincode via transient field, and the chaincode could confirm a hash of the passed private data
matches the on-chain hash from your collection using GetPrivateDataHash(), and then write the private data to
the other organization’s private data collection.

4.12. Private data 107

hyperledger-fabricdocs Documentation, Release master

* Transferring private data to other collections - You could ‘transfer’ the private data with chaincode that
deletes the private data key in your collection, and creates it in another organization’s collection. Again, use the
transient field to pass the private data upon chaincode invoke, and in the chaincode use GetPrivateDataHash()
to confirm that the data exists in your private data collection, before deleting the key from your collection and
creating the key in another organization’s collection. To ensure that a transaction always deletes from one
collection and adds to another collection, you may want to require endorsements from additional parties, such
as a regulator or auditor.

« Using private data for transaction approval - If you want to get a counterparty’s approval for a transaction
before it is completed (e.g. an on-chain record that they agree to purchase an asset for a certain price), the
chaincode can require them to ‘pre-approve’ the transaction, by either writing a private key to their private data
collection or your collection, which the chaincode will then check using GetPrivateDataHash(). In fact, this
is exactly the same mechanism that the built-in lifecycle system chaincode uses to ensure organizations agree
to a chaincode definition before it is committed to a channel. Starting with Fabric v2.0, this pattern becomes
more powerful with collection-level endorsement policies, to ensure that the chaincode is executed and endorsed
on the collection owner’s own trusted peer. Alternatively, a mutually agreed key with a key-level endorsement
policy could be used, that is then updated with the pre-approval terms and endorsed on peers from the required
organizations.

* Keeping transactors private - Variations of the prior pattern can also eliminate leaking the transactors for a
given transaction. For example a buyer indicates agreement to buy on their own collection, then in a subsequent
transaction seller references the buyer’s private data in their own private data collection. The proof of transaction
with hashed references is recorded on-chain, only the buyer and seller know that they are the transactors, but
they can reveal the pre-images if a need-to-know arises, such as in a subsequent transaction with another party
who could verify the hashes.

Coupled with the patterns above, it is worth noting that transactions with private data can be bound to the same
conditions as regular channel state data, specifically:

* Key level transaction access control - You can include ownership credentials in a private data value, so that
subsequent transactions can verify that the submitter has ownership privilege to share or transfer the data. In this
case the chaincode would get the submitter’s credentials (e.g. using GetCreator() chaincode API or CID library
API GetID() or GetMSPID()), combine it with other private data that gets passed to the chaincode, hash it, and
use GetPrivateDataHash() to verify that it matches the on-chain hash before proceeding with the transaction.

* Key level endorsement policies - And also as with normal channel state data, you can use state-based en-
dorsement to specify which organizations must endorse transactions that share or transfer private data, using
SetPrivateDataValidationParameter() chaincode API, for example to specify that only an owner’s organization
peer, custodian’s organization peer, or other third party must endorse such transactions.

Example scenario: Asset transfer using private data collections

The private data sharing patterns mentioned above can be combined to enable powerful chaincode-based applica-
tions. For example, consider how an asset transfer scenario could be implemented using per-organization private data
collections:

* An asset may be tracked by a UUID key in public chaincode state. Only the asset’s ownership is recorded,
nothing else is known about the asset.

* The chaincode will require that any transfer request must originate from the owning client, and the key is bound
by state-based endorsement requiring that a peer from the owner’s organization and a regulator’s organization
must endorse any transfer requests.

» The asset owner’s private data collection contains the private details about the asset, keyed by a hash of the
UUID. Other organizations and the ordering service will only see a hash of the asset details.

» Let’s assume the regulator is a member of each collection as well, and therefore persists the private data, although
this need not be the case.

108 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

A transaction to trade the asset would unfold as follows:

1.
2.

10.

Off-chain, the owner and a potential buyer strike a deal to trade the asset for a certain price.

The seller provides proof of their ownership, by either passing the private details out of band, or by providing
the buyer with credentials to query the private data on their node or the regulator’s node.

Buyer verifies a hash of the private details matches the on-chain public hash.

The buyer invokes chaincode to record their bid details in their own private data collection. The chaincode is
invoked on buyer’s peer, and potentially on regulator’s peer if required by the collection endorsement policy.

. The current owner (seller) invokes chaincode to sell and transfer the asset, passing in the private details and

bid information. The chaincode is invoked on peers of the seller, buyer, and regulator, in order to meet the
endorsement policy of the public key, as well as the endorsement policies of the buyer and seller private data
collections.

The chaincode verifies that the submitting client is the owner, verifies the private details against the hash in the
seller’s collection, and verifies the bid details against the hash in the buyer’s collection. The chaincode then
writes the proposed updates for the public key (setting ownership to the buyer, and setting endorsement policy
to be the buying organization and regulator), writes the private details to the buyer’s private data collection, and
potentially deletes the private details from seller’s collection. Prior to final endorsement, the endorsing peers
ensure private data is disseminated to any other authorized peers of the seller and regulator.

The seller submits the transaction with the public data and private data hashes for ordering, and it is distributed
to all channel peers in a block.

Each peer’s block validation logic will consistently verify the endorsement policy was met (buyer, seller, regu-
lator all endorsed), and verify that public and private state that was read in the chaincode has not been modified
by any other transaction since chaincode execution.

All peers commit the transaction as valid since it passed validation checks. Buyer peers and regulator peers
retrieve the private data from other authorized peers if they did not receive it at endorsement time, and persist
the private data in their private data state database (assuming the private data matched the hashes from the
transaction).

With the transaction completed, the asset has been transferred, and other channel members interested in the asset
may query the history of the public key to understand its provenance, but will not have access to any private
details unless an owner shares it on a need-to-know basis.

The basic asset transfer scenario could be extended for other considerations, for example the transfer chaincode could
verify that a payment record is available to satisfy payment versus delivery requirements, or verify that a bank has
submitted a letter of credit, prior to the execution of the transfer chaincode. And instead of transactors directly hosting
peers, they could transact through custodian organizations who are running peers.

4.12.6 Purging private data

For very sensitive data, even the parties sharing the private data might want — or might be required by government
regulations — to periodically “purge” the data on their peers, leaving behind a hash of the data on the blockchain to
serve as immutable evidence of the private data.

In some of these cases, the private data only needs to exist on the peer’s private database until it can be replicated into
a database external to the peer’s blockchain. The data might also only need to exist on the peers until a chaincode
business process is done with it (trade settled, contract fulfilled, etc).

To support these use cases, private data can be purged if it has not been modified for a configurable number of blocks.
Purged private data cannot be queried from chaincode, and is not available to other requesting peers.

4.12. Private data 109

hyperledger-fabricdocs Documentation, Release master

4.12.7 How a private data collection is defined

For more details on collection definitions, and other low level information about private data and collections, refer to
the private data reference topic.

4.13 Channel capabilities

Audience: Channel administrators, node administrators

Note: this is an advanced Fabric concept that is not necessary for new users or application developers to understand.
However, as channels and networks mature, understanding and managing capabilities becomes vital. Furthermore, it
is important to recognize that updating capabilities is a different, though often related, process to upgrading nodes.
We’ll describe this in detail in this topic.

Because Fabric is a distributed system that will usually involve multiple organizations, it is possible (and typical) that
different versions of Fabric code will exist on different nodes within the network as well as on the channels in that
network. Fabric allows this — it is not necessary for every peer and ordering node to be at the same version level. In
fact, supporting different version levels is what enables rolling upgrades of Fabric nodes.

What is important is that networks and channels process things in the same way, creating deterministic results for
things like channel configuration updates and chaincode invocations. Without deterministic results, one peer on a
channel might invalidate a transaction while another peer validates it.

To that end, Fabric defines levels of what are called “capabilities”. These capabilities, which are defined in the
configuration of each channel, ensure determinism by defining a level at which behaviors produce consistent results.
As you’ll see, these capabilities have versions which are closely related to node binary versions. Capabilities enable
nodes running at different version levels to behave in a compatible and consistent way given the channel configuration
at a specific block height. You will also see that capabilities exist in many parts of the configuration tree, defined along
the lines of administration for particular tasks.

As you’ll see, sometimes it is necessary to update your channel to a new capability level to enable a new feature.

4.13.1 Node versions and capability versions

If you’re familiar with Hyperledger Fabric, you’re aware that it follows a typical versioning pattern: v1.1, v1.2.1,
v2.0, etc. These versions refer to releases and their related binary versions. Capabilities follow the same versioning
convention. There are v1.1 capabilities and v1.2 capabilities and 2.0 capabilities and so on. But it’s important to note
a few distinctions.

¢ There is not necessarily a new capability level with each release. The need to establish a new capability is
determined on a case by case basis and relies chiefly on the backwards compatibility of new features and older
binary versions. Allowing channels to be created without the use of a system channel, a new feature in v2.3,
did not change the way either transactions or ordering service functions were handled and thus did not require
the establishment of any new capabilities. Private Data, on the other hand, could not be handled by peers before
v1.2, requiring the establishment of a v1.2 capability level. Because not every release contains a new feature (or
a bug fix) that changes the way transactions are processed, certain releases will not require any new capabilities
(for example, v1.4) while others will only have new capabilities at particular levels (such as v1.2 and v1.3).
We’ll discuss the “levels” of capabilities and where they reside in the configuration tree later.

* Nodes must be at least at the level of certain capabilities in a channel. When a peer joins a channel, it reads
all of the blocks in the ledger sequentially, starting with the genesis block of the channel and continuing through
the transaction blocks and any subsequent configuration blocks. If a node, for example a peer, attempts to read
a block containing an update to a capability it doesn’t understand (for example, a v1.4.x peer trying to read a
block containing a v2.0 application capability), the peer will crash. This crashing behavior is intentional, as
a v1.4.x peer should not attempt validate or commit any transactions past this point. Before joining a channel,

110 Chapter 4. Key Concepts

../private-data-arch.html
./create_channel/create_channel_participation.html
./private-data/private-data.html

hyperledger-fabricdocs Documentation, Release master

make sure the node is at least the Fabric version (binary) level of the capabilities specified in the channel
config relevant to the node. We’ll discuss which capabilities are relevant to which nodes later. However,
because no user wants their nodes to crash, it is strongly recommended to update all nodes to the required level
(preferably, to the latest release) before attempting to update capabilities. This is in line with the default Fabric
recommendation to always be at the latest binary and capability levels.

If users are unable to upgrade their binaries, then capabilities must be left at their lower levels. Lower level binaries
and capabilities will still work together as they’re meant to. However, keep in mind that it is a best practice to always
update to new binaries even if a user chooses not to update their capabilities. Because capabilities themselves also
include bug-fixes, it is always recommended to update capabilities once the network binaries support them.

4.13.2 Capability configuration groupings

As we discussed earlier, there is not a single capability level encompassing an entire channel. Rather, there are three
capabilities, each representing an area of administration.

¢ Orderer: These capabilities govern tasks and processing exclusive to the ordering service. Because these
capabilities do not involve processes that affect transactions or the peers, updating them falls solely to the
ordering service admins (peers do not need to understand orderer capabilities and will therefore not crash no
matter what the orderer capability is updated to). Note that these capabilities did not change between v1.1 and
v1.4.2. However, as we’ll see in the channel section, this does not mean that v1.1 ordering nodes will work on
all channels with capability levels below v1.4.2.

* Application: These capabilities govern tasks and processing exclusive to the peers. Because ordering service
admins have no role in deciding the nature of transactions between peer organizations, changing this capability
level falls exclusively to peer organizations. For example, Private Data can only be enabled on a channel with
the v1.2 (or higher) application group capability enabled. In the case of Private Data, this is the only capability
that must be enabled, as nothing about the way Private Data works requires a change to channel administration
or the way the ordering service processes transactions.

e Channel: This grouping encompasses tasks that are jointly administered by the peer organizations and the
ordering service. For example, this is the capability that defines the level at which channel configuration updates,
which are initiated by peer organizations and orchestrated by the ordering service, are processed. On a practical
level, this grouping defines the minimum level for all of the binaries in a channel, as both ordering nodes
and peers must be at least at the binary level corresponding to this capability in order to process the
capability.

While it is possible to create an ordering service using a legacy process in which a “system channel” administered
by the ordering service is created before any application channels are created, the recommended path is to create a
channel without using a system channel.

If you do use the legacy system channel process, the orderer and channel capabilities of a channel are inherited by
default from the ordering system channel, where modifying them are the exclusive purview of ordering service admins.
As aresult, peer organizations should inspect the genesis block of a channel prior to joining their peers to that channel.
Although the channel capability is administered by the orderers in the orderer system channel (just as the consortium
membership is), it is typical and expected that the ordering admins will coordinate with the consortium admins to
ensure that the channel capability is only upgraded when the consortium is ready for it. Note: because the ordering
system channel does not define an application capability, this capability must be specified in the channel profile when
creating the genesis block for the channel.

If you use the recommended process to Create a channel without a system channel, all these capability levels are
specified in the application channel genesis block that is created.

Take caution when modifying an application capability. Because the ordering service does not validate that the
capability level exists, it will allow a channel to be modified to contain, for example, a v1.8 application capability even
if no such capability exists. Any peer attempting to read a configuration block with this capability would, as we have

4.13. Channel capabilities 111

./create_channel/create_channel.html
./create_channel/create_channel_participation.html

hyperledger-fabricdocs Documentation, Release master

shown, crash, and even if it was possible to modify the channel once again to a valid capability level, it would not
matter, as no peer would be able to get past the block with the invalid v1.8 capability.

For a full look at the current valid orderer, application, and channel capabilities check out a sample configtx.yaml
file, which lists them in the “Capabilities” section.

For more specific information about capabilities and where they reside in the channel configuration, check out defining
capability requirements.

4.14 Use Cases

The Hyperledger Requirements WG is documenting a number of blockchain use cases and maintaining an inventory
here.

112 Chapter 4. Key Concepts

http://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml
http://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml
capability_requirements.html
capability_requirements.html
https://wiki.hyperledger.org/display/LMDWG/Use+Cases

CHAPTER B

Getting Started

5.1 Prerequisites

Before you begin, you should confirm that you have installed all the prerequisites below on the platform where you
will be running Hyperledger Fabric.

Note: These prerequisites are recommended for Fabric users. If you are a Fabric developer you should refer to the
instructions for Serting up the development environment.

5.1.1 Install Git

Download the latest version of git if it is not already installed, or if you have problems running the curl commands.

5.1.2 Install cURL

Download the latest version of the cURL tool if it is not already installed or if you get errors running the curl commands
from the documentation.

Note: If you're on Windows please see the specific note on Windows extras below.

5.1.3 Docker and Docker Compose
You will need the following installed on the platform on which you will be operating, or developing on (or for),
Hyperledger Fabric:

* MacOSX, *nix, or Windows 10: Docker Docker version 17.06.2-ce or greater is required.

¢ Older versions of Windows: Docker Toolbox - again, Docker version Docker 17.06.2-ce or greater is required.

113

https://git-scm.com/downloads
https://curl.haxx.se/download.html
https://www.docker.com/get-docker
https://docs.docker.com/toolbox/toolbox_install_windows/

hyperledger-fabricdocs Documentation, Release master

The Fabric sample test network has been successfully verified with Docker 2.5.0.1. Higher versions may not work
at this time. You can check the version of Docker you have installed with the following command from a terminal
prompt:

docker —--version

Note: The following applies to linux systems running systemd.

Make sure the docker daemon is running.

’sudo systemctl start docker

Optional: If you want the docker daemon to start when the system starts, use the following:

’sudo systemctl enable docker

Add your user to the docker group.

’sudo usermod —-a -G docker <username>

Note: Installing Docker for Mac or Windows, or Docker Toolbox will also install Docker Compose. If you already
had Docker installed, you should check that you have Docker Compose version 1.14.0 or greater installed. If not, we
recommend that you install a more recent version of Docker.

You can check the version of Docker Compose you have installed with the following command from a terminal prompt:

docker—-compose —-version

5.1.4 Windows extras

On Windows 10 you should use the native Docker distribution and you may use the Windows PowerShell. However,
for the binaries command to succeed you will still need to have the uname command available. You can get it as
part of Git but beware that only the 64bit version is supported.

Before running any git clone commands, run the following commands:

git config —--global core.autocrlf false
git config —--global core.longpaths true

You can check the setting of these parameters with the following commands:

git config —-—get core.autocrlf
git config ——-get core.longpaths

These need to be false and t rue respectively.

The curl command that comes with Git and Docker Toolbox is old and does not handle properly the redirect used in
Getting Started. Make sure you have and use a newer version which can be downloaded from the cURL downloads
page

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

114 Chapter 5. Getting Started

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

hyperledger-fabricdocs Documentation, Release master

5.2 Install Samples, Binaries, and Docker Images

While we work on developing real installers for the Hyperledger Fabric binaries, we provide a script that will download
and install samples and binaries to your system. We think that you’ll find the sample applications installed useful to
learn more about the capabilities and operations of Hyperledger Fabric.

Note: If you are running on Windows you will want to make use of the Docker Quickstart Terminal for the upcoming
terminal commands. Please visit the Prerequisites if you haven’t previously installed it.

If you are using Docker Toolbox or macOS, you will need to use a location under /Users (macOS) when installing
and running the samples.

If you are using Docker for Mac, you will need to use a location under /Users, /Volumes, /private, or /tmp.
To use a different location, please consult the Docker documentation for file sharing.

If you are using Docker for Windows, please consult the Docker documentation for shared drives and use a location
under one of the shared drives.

Determine a location on your machine where you want to place the fabric-samples repository and enter that directory
in a terminal window. The command that follows will perform the following steps:

1. If needed, clone the hyperledger/fabric-samples repository
2. Checkout the appropriate version tag

3. Install the Hyperledger Fabric platform-specific binaries and config files for the version specified into the /bin
and /config directories of fabric-samples

4. Download the Hyperledger Fabric docker images for the version specified

Once you are ready, and in the directory into which you will install the Fabric Samples and binaries, go ahead and
execute the command to pull down the binaries and images.

Note: If you want the latest production release, omit all version identifiers.

curl -sSL https://bit.ly/2ysbOFE | bash -s

Note: If you want a specific release, pass a version identifier for Fabric and Fabric-CA docker images. The command
below demonstrates how to download the latest production releases - Fabric v2.3.0 and Fabric CA v1.4.9

curl -sSL https://bit.ly/2ysbOFE | bash -s —-- <fabric_version> <fabric-ca_version>
curl -sSL https://bit.ly/2ysbOFE | bash -s —- 2.3.0 1.4.9

Note: If you get an error running the above curl command, you may have too old a version of curl that does not
handle redirects or an unsupported environment.

Please visit the Prerequisites page for additional information on where to find the latest version of curl and get the right
environment. Alternately, you can substitute the un-shortened URL: https://raw.githubusercontent.com/hyperledger/
fabric/master/scripts/bootstrap.sh

5.2. Install Samples, Binaries, and Docker Images 115

https://docs.docker.com/docker-for-mac/#file-sharing
https://docs.docker.com/docker-for-windows/#shared-drives
https://github.com/hyperledger/fabric-samples
https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh
https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh

hyperledger-fabricdocs Documentation, Release master

Note: For additional use pattern you can use the -h flag to view the help and available commands for the Fabric-
Samples bootstrap script. For example: curl -sSL https://bit.ly/2ysbOFE | bash -s -- -h

The command above downloads and executes a bash script that will download and extract all of the platform-specific
binaries you will need to set up your network and place them into the cloned repo you created above. It retrieves the
following platform-specific binaries:

* configtxgen,
e configtxlator,
* cryptogen,
e discover,
* idemixgen
e orderer,
* peer,
e fabric-ca-client,
* fabric-ca-server
and places them in the bin sub-directory of the current working directory.

You may want to add that to your PATH environment variable so that these can be picked up without fully qualifying
the path to each binary. e.g.:

export PATH=<path to download location>/bin:$PATH

Finally, the script will download the Hyperledger Fabric docker images from Docker Hub into your local Docker
registry and tag them as ‘latest’.

The script lists out the Docker images installed upon conclusion.

Look at the names for each image; these are the components that will ultimately comprise our Hyperledger Fabric
network. You will also notice that you have two instances of the same image ID - one tagged as “amd64-1.x.x” and
one tagged as “latest”. Prior to 1.2.0, the image being downloaded was determined by uname -m and showed as
“x86_64-1.x.x".

Note: On different architectures, the x86_64/amd64 would be replaced with the string identifying your architecture.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

5.3 Using the Fabric test network

After you have downloaded the Hyperledger Fabric Docker images and samples, you can deploy a test network by
using scripts that are provided in the fabric—-samples repository. The test network is provided for learning about
Fabric by running nodes on your local machine. Developers can use the network to test their smart contracts and
applications. The network is meant to be used only as a tool for education and testing and not as a model for how to
set up a network. In general, modifications to the scripts are discouraged and could break the network. It is based on
a limited configuration that should not be used as a template for deploying a production network:

116 Chapter 5. Getting Started

https://hub.docker.com/u/hyperledger/

hyperledger-fabricdocs Documentation, Release master

¢ It includes two peer organizations and an ordering organization.
* For simplicity, a single node Raft ordering service is configured.

* To reduce complexity, a TLS Certificate Authority (CA) is not deployed. All certificates are issued by the root
CAs.

* The sample network deploys a Fabric network with Docker Compose. Because the nodes are isolated within a
Docker Compose network, the test network is not configured to connect to other running Fabric nodes.

To learn how to use Fabric in production, see Deploying a production network.

Note: These instructions have been verified to work against the latest stable Fabric Docker images and the pre-
compiled setup utilities within the supplied tar file. If you run these commands with images or tools from the current
master branch, it is possible that you will encounter errors.

5.3.1 Before you begin

Before you can run the test network, you need to clone the fabric-samples repository and download the Fabric
images. Make sure that you have installed the Prerequisites and Installed the Samples, Binaries and Docker Images.

Note: The test network has been successfully verified with Docker version 2.5.0.1 and is the recommended version at
this time. Higher versions of Docker may not work.

5.3.2 Bring up the test network

You can find the scripts to bring up the network in the test —network directory of the fabric—-samples reposi-
tory. Navigate to the test network directory by using the following command:

cd fabric-samples/test-network

In this directory, you can find an annotated script, network . sh, that stands up a Fabric network using the Docker
images on your local machine. You can run . /network.sh -h to print the script help text:

Usage:
network.sh <Mode> [Flags]
Modes:
up - Bring up Fabric orderer and peer nodes. No channel is created
up createChannel - Bring up fabric network with one channel
createChannel - Create and join a channel after the network is created
deployCC - Deploy a chaincode to a channel (defaults to asset-transfer-basic)
down - Bring down the network

Flags:

Used with network.sh up, network.sh createChannel:

—ca <use CAs> - Use Certificate Authorities to generate network crypto material

—c <channel name> - Name of channel to create (defaults to "mychannel™)

—-s <dbtype> - Peer state database to deploy: goleveldb (default) or couchdb

-r <max retry> - CLI times out after certain number of attempts (defaults to 5)

-d <delay> - CLI delays for a certain number of seconds (defaults to 3)

-1 <imagetag> - Docker image tag of Fabric to deploy (defaults to "latest")

—cail <ca_imagetag> - Docker image tag of Fabric CA to deploy (defaults to "latest
—")

-verbose - Verbose mode

Used with network.sh deployCC
—-c <channel name> - Name of channel to deploy chaincode to

(continues on next page)

5.3. Using the Fabric test network 117

deployment_guide_overview.html
prereqs.html
install.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

—ccn <name> - Chaincode name.

-ccl <language> - Programming language of the chaincode to deploy: go (default),
—java, javascript, typescript

—-ccv <version> - Chaincode version. 1.0 (default), v2, version3.x, etc

—ccs <sequence> - Chaincode definition sequence. Must be an integer, 1 (default),
- 2, 3, etc

—-ccp <path> - File path to the chaincode.

—-ccep <policy> - (Optional) Chaincode endorsement policy using signature policy,,
—syntax. The default policy requires an endorsement from Orgl and Org2

—-cccg <collection-config> - (Optional) File path to private data collections,

—configuration file

—-cci <fcn name> — (Optional) Name of chaincode initialization function. When a_
—~function is provided, the execution of init will be requested and the function will
—be invoked.

-h - Print this message

Possible Mode and flag combinations
up -ca -r -d -s -1 -cai -verbose
up createChannel -ca -¢ -r -d -s -1 —-cail -verbose
createChannel -c¢c -r -d -verbose
deployCC -ccn —-ccl —-ccv —-ccs —ccp —-cci —r —-d -verbose

Examples:

network.sh up createChannel -ca -c mychannel -s couchdb -1 2.0.0

network.sh createChannel -c channelName

network.sh deployCC —ccn basic -ccp ../asset-transfer-basic/chaincode-javascript/ -
—ccl javascript

network.sh deployCC —ccn mychaincode -ccp ./user/mychaincode -ccv 1 -ccl javascript

From inside the test-network directory, run the following command to remove any containers or artifacts from
any previous runs:

’./network.sh down

You can then bring up the network by issuing the following command. You will experience problems if you try to run
the script from another directory:

’./network.sh up

This command creates a Fabric network that consists of two peer nodes, one ordering node. No channel is created
whenyourun . /network.sh up,though we will get there in a future step. If the command completes successfully,
you will see the logs of the nodes being created:

Creating network "net_test" with the default driver

Creating volume "net_ orderer.example.com" with default driver
Creating volume "net_peer(O.orgl.example.com" with default driver
Creating volume "net_peer(O.org2.example.com" with default driver

Creating peer0O.org2.example.com ... done

Creating orderer.example.com ... done

Creating peer0O.orgl.example.com ... done

Creating cli ... done

CONTAINER ID IMAGE COMMAND CREATED o
— STATUS PORTS NAMES
1667543b5634 hyperledger/fabric-tools:latest "/bin/bash" 1 second ago
— Up Less than a second cli

(continues on next page)

118 Chapter 5. Getting Started

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

b6bl117c81lc7f hyperledger/fabric-peer:latest "peer node start" 2 seconds ago
— Up 1 second 0.0.0.0:7051->7051/tcp peer0.
—orgl.example.com

703ead770e05 hyperledger/fabric-orderer:latest "orderer" 2 seconds ago

— Up Less than a second 0.0.0.0:7050->7050/tcp, 0.0.0.0:7053->7053/tcp orderer.
—example.com

718d43f5£312 hyperledger/fabric-peer:latest "peer node start" 2 seconds ago
— Up 1 second 7051/tcp, 0.0.0.0:9051->9051/tcp peer0.
—org2.example.com

[

If you don’t get this result, jump down to Troubleshooting for help on what might have gone wrong. By default, the
network uses the cryptogen tool to bring up the network. However, you can also bring up the network with Certificate
Authorities.

The components of the test network

After your test network is deployed, you can take some time to examine its components. Run the following command
to list all of Docker containers that are running on your machine. You should see the three nodes that were created by
the network. sh script:

docker ps -a

Each node and user that interacts with a Fabric network needs to belong to an organization in order to participate
in the network. The test network includes two peer organizations, Orgl and Org2. It also includes a single orderer
organization that maintains the ordering service of the network.

Peers are the fundamental components of any Fabric network. Peers store the blockchain ledger and validate transac-
tions before they are committed to the ledger. Peers run the smart contracts that contain the business logic that is used
to manage the assets on the blockchain ledger.

Every peer in the network needs to belong to an organization. In the test network, each organization operates one peer
each, peer0.orgl.example.comand peer(0.org2.example.com.

Every Fabric network also includes an ordering service. While peers validate transactions and add blocks of transac-
tions to the blockchain ledger, they do not decide on the order of transactions or include them into new blocks. On a
distributed network, peers may be running far away from each other and not have a common view of when a transac-
tion was created. Coming to consensus on the order of transactions is a costly process that would create overhead for
the peers.

An ordering service allows peers to focus on validating transactions and committing them to the ledger. After ordering
nodes receive endorsed transactions from clients, they come to consensus on the order of transactions and then add
them to blocks. The blocks are then distributed to peer nodes, which add the blocks to the blockchain ledger.

The sample network uses a single node Raft ordering service that is operated by the orderer organization. You can
see the ordering node running on your machine as orderer.example.com. While the test network only uses a
single node ordering service, a production network would have multiple ordering nodes, operated by one or multiple
orderer organizations. The different ordering nodes would use the Raft consensus algorithm to come to agreement on
the order of transactions across the network.

5.3.3 Creating a channel

Now that we have peer and orderer nodes running on our machine, we can use the script to create a Fabric channel
for transactions between Orgl and Org2. Channels are a private layer of communication between specific network
members. Channels can be used only by organizations that are invited to the channel, and are invisible to other

5.3. Using the Fabric test network 119

peers/peers.html
orderer/ordering_service.html

hyperledger-fabricdocs Documentation, Release master

members of the network. Each channel has a separate blockchain ledger. Organizations that have been invited “join”
their peers to the channel to store the channel ledger and validate the transactions on the channel.

You can use the network. sh script to create a channel between Orgl and Org2 and join their peers to the channel.
Run the following command to create a channel with the default name of mychannel:

’./network.sh createChannel

If the command was successful, you can see the following message printed in your logs:

’::::::::: Channel successfully joined ===========

You can also use the channel flag to create a channel with custom name. As an example, the following command
would create a channel named channell:

’./network.sh createChannel -c channell

The channel flag also allows you to create multiple channels by specifying different channel names. After you create
mychannel or channell, you can use the command below to create a second channel named channel2:

’./network.sh createChannel -c channel?2

If you want to bring up the network and create a channel in a single step, you can use the up and createChannel
modes together:

’./network.sh up createChannel

5.3.4 Starting a chaincode on the channel

After you have created a channel, you can start using smart contracts to interact with the channel ledger. Smart
contracts contain the business logic that governs assets on the blockchain ledger. Applications run by members of
the network can invoke smart contracts to create assets on the ledger, as well as change and transfer those assets.
Applications also query smart contracts to read data on the ledger.

To ensure that transactions are valid, transactions created using smart contracts typically need to be signed by multiple
organizations to be committed to the channel ledger. Multiple signatures are integral to the trust model of Fabric.
Requiring multiple endorsements for a transaction prevents one organization on a channel from tampering with the
ledger on their peer or using business logic that was not agreed to. To sign a transaction, each organization needs to
invoke and execute the smart contract on their peer, which then signs the output of the transaction. If the output is
consistent and has been signed by enough organizations, the transaction can be committed to the ledger. The policy that
specifies the set organizations on the channel that need to execute the smart contract is referred to as the endorsement
policy, which is set for each chaincode as part of the chaincode definition.

In Fabric, smart contracts are deployed on the network in packages referred to as chaincode. A Chaincode is installed
on the peers of an organization and then deployed to a channel, where it can then be used to endorse transactions and
interact with the blockchain ledger. Before a chaincode can be deployed to a channel, the members of the channel need
to agree on a chaincode definition that establishes chaincode governance. When the required number of organizations
agree, the chaincode definition can be committed to the channel, and the chaincode is ready to be used.

After you have used the network . sh to create a channel, you can start a chaincode on the channel using the follow-
ing command:

./network.sh deployCC -ccn basic -ccp ../asset-transfer-basic/chaincode-go -ccl go

The deployCC subcommand will install the asset-transfer (basic) chaincode on peer0.orgl.example.com
and peer0.org2.example.com and then deploy the chaincode on the channel specified using the channel flag

120 Chapter 5. Getting Started

smartcontract/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

(or mychannel if no channel is specified). If you are deploying a chaincode for the first time, the script will install
the chaincode dependencies. You can use the language flag, —1, to install the Go, typescript or javascript versions
of the chaincode. You can find the asset-transfer (basic) chaincode in the asset-transfer-basic folder of the
fabric-samples directory. This folder contains sample chaincode that are provided as examples and used by
tutorials to highlight Fabric features.

5.3.5 Interacting with the network

After you bring up the test network, you can use the peer CLI to interact with your network. The peer CLI allows
you to invoke deployed smart contracts, update channels, or install and deploy new smart contracts from the CLI.

Make sure that you are operating from the test-network directory. If you followed the instructions to install the
Samples, Binaries and Docker Images, You can find the peer binaries in the bin folder of the fabric-samples
repository. Use the following command to add those binaries to your CLI Path:

’export PATH=S${PWD}/../bin:S$SPATH

You also need to set the FABRIC_CFG_PATH to point to the core . yaml file in the fabric-samples repository:

’ export FABRIC_CFG_PATH=S$PWD/../config/

You can now set the environment variables that allow you to operate the peer CLI as Orgl:

Environment variables for Orgl

export CORE_PEER_TLS_ENABLED=true

export CORE_PEER_LOCALMSPID="OrglMSP"

export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/orgl.
—example.com/peers/peer0.orgl.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/orgl.example.
—com/users/Admin@orgl.example.com/msp

export CORE_PEER_ADDRESS=localhost:7051

The CORE_PEER_TLS_ROOTCERT_FILE and CORE_PEER_MSPCONFIGPATH environment variables point to
the Orgl crypto material in the organizations folder.

Ifyouused . /network.sh deployCC —ccl go toinstall and start the asset-transfer (basic) chaincode, you can
invoke the InitLedger function of the (Go) chaincode to put an initial list of assets on the ledger (if using typescript
or javascript . /network.sh deployCC -ccl javascript for example, you will invoke the InitLedger
function of the respective chaincodes).

Run the following command to initialize the ledger with assets:

peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
—com —--tls —--cafile "$ /organizations/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" -C mychannel -n_
—basic —-peerAddresses localhost:7051 --tlsRootCertFiles "$ /organizations/
—peerOrganizations/orgl.example.com/peers/peer0.orgl.example.com/tls/ca.crt" —-
—peerAddresses localhost:9051 --tlsRootCertFiles "$ /organizations/
—peerOrganizations/org2.example.com/peers/peer(0.org2.example.com/tls/ca.crt" -c '{
—"function":"InitLedger", "Args":[]}"'

If successful, you should see similar output to below:

—> INFO 001 Chaincode invoke successful. result: status:200

You can now query the ledger from your CLI. Run the following command to get the list of assets that were added to
your channel ledger:

5.3. Using the Fabric test network 121

install.html
install.html

hyperledger-fabricdocs Documentation, Release master

peer chaincode query —-C mychannel -n basic -c '{"Args":["GetAllAssets"]}'

If successful, you should see the following output:

[

{"ID": "assetl", "color": "blue", "size": 5, "owner": "Tomoko", "appraisedvValue":
300},

{"ID": "asset2", "color": "red", "size": 5, "owner": "Brad", "appraisedvalue": 400},

{"ID": "asset3", "color": "green", "size": 10, "owner": "Jin Soo", "appraisedValue
—": 500},

{"ID": "asset4", "color": "yellow", "size": 10, "owner": "Max", "appraisedvalue":
600},

{"ID": "assetb5", "color": "black", "size": 15, "owner": "Adriana", "appraisedValue
—": 700},

{"ID": "asset6", "color": "white", "size": 15, "owner": "Michel", "appraisedValue":
—8001}

]

Chaincodes are invoked when a network member wants to transfer or change an asset on the ledger. Use the following
command to change the owner of an asset on the ledger by invoking the asset-transfer (basic) chaincode:

peer chaincode invoke -o localhost:7050 —--ordererTLSHostnameOverride orderer.example.
—com —-tls —--cafile "$ /organizations/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" -C mychannel -n_
—basic —-peerAddresses localhost:7051 --tlsRootCertFiles "$ /organizations/
—peerOrganizations/orgl.example.com/peers/peer(0.orgl.example.com/tls/ca.crt" ——
—peerAddresses localhost:9051 --tlsRootCertFiles "$ /organizations/
—peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt" -c '{
—"function":"TransferAsset", "Args": ["asset6", "Christopher"]}'

If the command is successful, you should see the following response:

2019-12-04 17:38:21.048 EST [chaincodeCmd] chaincodeInvokeOrQuery —> INFO 001
—~Chaincode invoke successful. result: status:200

Because the endorsement policy for the asset-transfer (basic) chaincode requires the transaction to be signed by Orgl
and Org2, the chaincode invoke command needs to target both peer0.orgl.example.comand peer0.org2.
example.com using the ——peerAddresses flag. Because TLS is enabled for the network, the command also
needs to reference the TLS certificate for each peer using the ——t1sRootCertFiles flag.

After we invoke the chaincode, we can use another query to see how the invoke changed the assets on the blockchain
ledger. Since we already queried the Orgl peer, we can take this opportunity to query the chaincode running on the
Org?2 peer. Set the following environment variables to operate as Org2:

Environment variables for Org2

export CORE_PEER_TLS_ENABLED=true

export CORE_PEER_LOCALMSPID="Org2MSP"

export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
—example.com/peers/peer0.org2.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
—com/users/Admin@Rorg2.example.com/msp

export CORE_PEER_ADDRESS=localhost:9051

You can now query the asset-transfer (basic) chaincode running on peer0.org2.example.com:

peer chaincode query -C mychannel -n basic -c '{"Args":["ReadAsset", "asset6"]}'

122 Chapter 5. Getting Started

hyperledger-fabricdocs Documentation, Release master

The result will show that "asset 6" was transferred to Christopher:

{"ID":"asset6","color":"white", "size":15, "owner":"Christopher", "appraisedvalue":800}

5.3.6 Bring down the network

When you are finished using the test network, you can bring down the network with the following command:

./network.sh down

The command will stop and remove the node and chaincode containers, delete the organization crypto material, and
remove the chaincode images from your Docker Registry. The command also removes the channel artifacts and docker
volumes from previous runs, allowing you to run . /network.sh up again if you encountered any problems.

5.3.7 Next steps

Now that you have used the test network to deploy Hyperledger Fabric on your local machine, you can use the tutorials
to start developing your own solution:

* Learn how to deploy your own smart contracts to the test network using the Deploying a smart contract to a
channel tutorial.

* Visit the Writing Your First Application tutorial to learn how to use the APIs provided by the Fabric SDKs to
invoke smart contracts from your client applications.

* If you are ready to deploy a more complicated smart contract to the network, follow the commercial paper
tutorial to explore a use case in which two organizations use a blockchain network to trade commercial paper.

You can find the complete list of Fabric tutorials on the tutorials page.

5.3.8 Bring up the network with Certificate Authorities

Hyperledger Fabric uses public key infrastructure (PKI) to verify the actions of all network participants. Every node,
network administrator, and user submitting transactions needs to have a public certificate and private key to verify
their identity. These identities need to have a valid root of trust, establishing that the certificates were issued by an
organization that is a member of the network. The network . sh script creates all of the cryptographic material that
is required to deploy and operate the network before it creates the peer and ordering nodes.

By default, the script uses the cryptogen tool to create the certificates and keys. The tool is provided for development
and testing, and can quickly create the required crypto material for Fabric organizations with a valid root of trust.
When yourun . /network.sh up, you can see the cryptogen tool creating the certificates and keys for Orgl, Org2,
and the Orderer Org.

creating Orgl, Org2, and ordering service organization with crypto from 'cryptogen'
/Usr/fabric-samples/test-network/../bin/cryptogen

#E#AFAAAHAAA A RFARARARAAFAAA A A AAARA A A AHA R A AAARA RS
Generate certificates using cryptogen tool
#HEHAHAAAAA AR A AR A A AR EA AR AA A AR AAAHAAA

(ddzddagzdasddasddasdsasdsatdsatisatdsaddaaddaaddadadaddsdsi
#H########## Create Orgl Identities ###################H##H#
HAFHAFFHARFHAFFRAFFHAFFAAFFRAAFHAFFAAFHAAF AR FRAAFHAAFHAAS

(continues on next page)

5.3. Using the Fabric test network 123

deploy_chaincode.html
deploy_chaincode.html
write_first_app.html
tutorial/commercial_paper.html
tutorial/commercial_paper.html
tutorials.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

+ cryptogen generate —--config=./organizations/cryptogen/crypto-config-orgl.yaml ——
—output=organizations

orgl.example.com

+ res=0

+ set +x

AHHAHAFHAHAFHAHAF AR A AR FA AR FAFEAFAF A FAF A FAF A H AR HA

#H###t######## Create Org2 Identities ###############AAHHHHH

#tHE#AF A HAF A FAF A AR AR F AR F AR AR AR

+ cryptogen generate --config=./organizations/cryptogen/crypto-config-org2.yaml —-
—output=organizations

org2.example.com

+ res=0

+ set +x

#tHE#AF A HAF A HAF A RAF AR F AR AR AR AR AR A

#H#####AF### Create Orderer Org Identities ##########H#####
#HAEREAEAAFAHAEAAARAAHAAA A AF AR HA AR H A A AFAHA R AR HA A

+ cryptogen generate --config=./organizations/cryptogen/crypto-config-orderer.yaml —-—
—output=organizations

+ res=0

+ set +x

However, the test network script also provides the option to bring up the network using Certificate Authorities (CAs).
In a production network, each organization operates a CA (or multiple intermediate CAs) that creates the identities that
belong to their organization. All of the identities created by a CA run by the organization share the same root of trust.
Although it takes more time than using cryptogen, bringing up the test network using CAs provides an introduction
to how a network is deployed in production. Deploying CAs also allows you to enroll client identities with the Fabric
SDKSs and create a certificate and private key for your applications.

If you would like to bring up a network using Fabric CAs, first run the following command to bring down any running
networks:

’./network.sh down

You can then bring up the network with the CA flag:

’./network.sh up -ca

After you issue the command, you can see the script bringing up three CAs, one for each organization in the network.

FARFARHAARAAAHAARFA AR AR AAA AR AR H AR A AR AR HA AR AR A
Generate certificates using Fabric CA's
#E#AF AR RARA AR RARAAHAAARA A AAAEA A A AHA R A RAARA RS
Creating network "net_default" with the default driver

Creating ca_org2 ... done
Creating ca_orgl ... done
Creating ca_orderer ... done

It is worth taking time to examine the logs generated by the . /network . sh script after the CAs have been deployed.
The test network uses the Fabric CA client to register node and user identities with the CA of each organization.
The script then uses the enroll command to generate an MSP folder for each identity. The MSP folder contains the
certificate and private key for each identity, and establishes the identity’s role and membership in the organization that
operated the CA. You can use the following command to examine the MSP folder of the Orgl admin user:

tree organizations/peerOrganizations/orgl.example.com/users/Admin@orgl.example.com/

The command will reveal the MSP folder structure and configuration file:

124 Chapter 5. Getting Started

hyperledger-fabricdocs Documentation, Release master

organizations/peerOrganizations/orgl.example.com/users/Admin@orgl.example.com/
L— msp
—— IssuerPublicKey
— IssuerRevocationPublicKey
— cacerts
— localhost-7054-ca-orgl.pem
— config.yaml
— keystore
L— 58e81e6f1ee8930df46841bf88c22a08ae53¢1332319854608539%9ee78ed2fd65_sk
— signcerts
— cert.pem

—— user

You can find the certificate of the admin user in the signcerts folder and the private key in the keystore folder.
To learn more about MSPs, see the Membership Service Provider concept topic.

Both cryptogen and the Fabric CAs generate the cryptographic material for each organization in the
organizations folder. You can find the commands that are used to set up the network in the registerEnroll.
sh script in the organizations/fabric-ca directory. To learn more about how you would use the Fabric CA
to deploy a Fabric network, visit the Fabric CA operations guide. You can learn more about how Fabric uses PKI by
visiting the identity and membership concept topics.

5.3.9 What’s happening behind the scenes?

If you are interested in learning more about the sample network, you can investigate the files and scripts in the
test-network directory. The steps below provide a guided tour of what happens when you issue the command of
./network.sh up.

* . /network.sh creates the certificates and keys for two peer organizations and the orderer organization.
By default, the script uses the cryptogen tool using the configuration files located in the organizations/
cryptogen folder. If you use the —ca flag to create Certificate Authorities, the script uses Fabric CA server
configuration files and registerEnroll. sh script located in the organizations/fabric-ca folder.
Both cryptogen and the Fabric CAs create the crypto material and MSP folders for all three organizations in the
organizations folder.

* Once the organization crypto material has been generated, the network. sh can bring up the nodes of the
network. The script uses the docker—-compose-test-net.yaml file in the docker folder to create the
peer and orderer nodes. The docker folder also contains the docker—compose-e2e.yaml file that brings
up the nodes of the network alongside three Fabric CAs. This file is meant to be used to run end-to-end tests by
the Fabric SDK. Refer to the Node SDK repo for details on running these tests.

 If you use the createChannel subcommand, . /network.sh runs the createChannel. sh script in
the scripts folder to create a channel using the supplied channel name. The script uses the configtxgen
tool to create the channel genesis block based on the TwoOrgsApplicationGenesis channel profile in
the configtx/configtx.yaml file. After creating the channel, the script uses the peer cli to join peer0.
orgl.example.comand peer0.org2.example.com to the channel, and make both of the peers anchor
peers.

¢ If you issue the deployCC command, . /network.sh runs the deployCC. sh script to install the asset-
transfer (basic) chaincode on both peers and then define then chaincode on the channel. Once the chaincode
definition is committed to the channel, the peer cli initializes the chaincode using the Init and invokes the
chaincode to put initial data on the ledger.

5.3. Using the Fabric test network 125

membership/membership.html
https://hyperledger-fabric-ca.readthedocs.io/en/latest/operations_guide.html
identity/identity.html
membership/membership.html
https://github.com/hyperledger/fabric-sdk-node

hyperledger-fabricdocs Documentation, Release master

5.3.10 Troubleshooting

If you have any problems with the tutorial, review the following:

* You should always start your network fresh. You can use the following command to remove the artifacts, crypto
material, containers, volumes, and chaincode images from previous runs:

./network.sh down

You will see errors if you do not remove old containers, images, and volumes.

* If you see Docker errors, first check your Docker version (Prerequisites), and then try restarting your Docker
process. Problems with Docker are oftentimes not immediately recognizable. For example, you may see errors
that are the result of your node not being able to access the crypto material mounted within a container.

If problems persist, you can remove your images and start from scratch:

docker rm —-f $(docker ps -aq)
docker rmi —-f $(docker images -q)

* If you are running Docker Desktop on macOS and experience the following error during chaincode installation:

Error: chaincode install failed with status: 500 - failed to invoke backing,,
—~implementation of 'InstallChaincode': could not build chaincode: docker build_
—failed: docker image inspection failed: Get "http://unix.sock/images/dev-peer(.
—orgl.example.com-basic_1.0-
—4ecl91e793b27e953ff2edeb5al8bcc63152cecbled4c3£301a26e22692c61967ad—
—42f57faac8360472e47cbbbf3940e81bba83439702d085878d148089%al1b213ca/json": dial,,
—unix /host/var/run/docker.sock: connect: no such file or directory

Chaincode installation on peerO.orgl has failed

Deploying chaincode failed

This problem is caused by a newer version of Docker Desktop for macOS. To resolve this issue, in the Docker
Desktop preferences, uncheck the box Use gRPC FUSE for file sharing to use the legacy osxfs file
sharing instead and click Apply & Restart.

* If you see errors on your create, approve, commit, invoke or query commands, make sure you have properly
updated the channel name and chaincode name. There are placeholder values in the supplied sample commands.

* If you see the error below:

Error: Error endorsing chaincode: rpc error: code = 2 desc = Error installing,,
—chaincode code mycc:1.0 (chaincode /var/hyperledger/production/chaincodes/mycc.1.
—0 exits)

You likely have chaincode images (e.g. dev-peerl.org2.example.com-asset-transfer-1.0 or
dev-peer(.orgl.example.com-asset-transfer—1.0) from prior runs. Remove them and try
again.

docker rmi -f $(docker images | grep dev-peer[0-9] | awk '{print $3}'")

* If you see the below error:

[configtx/tool/localconfig] Load -> CRIT 002 Error reading configuration:
—Unsupported Config Type ""
panic: Error reading configuration: Unsupported Config Type ""

Then you did not set the FABRIC_CFG_PATH environment variable properly. The configtxgen tool needs this
variable in order to locate the configtx.yaml. Go back and execute an export FABRIC_CFG_PATH=$PWD/
configtx/configtx.yaml, then recreate your channel artifacts.

126 Chapter 5. Getting Started

prereqs.html

hyperledger-fabricdocs Documentation, Release master

* If you see an error stating that you still have “active endpoints”, then prune your Docker networks. This will
wipe your previous networks and start you with a fresh environment:

docker network prune

You will see the following message:

WARNING! This will remove all networks not used by at least one container.
Are you sure you want to continue? [y/N]

Select y.

* If you try to create a channel with the command . /network.sh createChannel, and it fails with the
following error:

[comm.tls] ClientHandshake —> ERRO 003 Client TLS handshake failed after 1.
—908956ms with error: EOF remoteaddress=127.0.0.1:7051

Error: error getting endorser client for channel: endorser client failed to_,
—connect to localhost:7051: failed to create new connection: context deadline
—exceeded

After 5 attempts, peer0.orgl has failed to join channel 'mychannel'

You need to uninstall Docker and reinstall the recommended version 2.5.0.1. Then, reclone the
fabric-samples repository before reattempting the commands.

* If you see an error similar to the following:

/bin/bash: ./scripts/createChannel.sh: /bin/bash”"M: bad interpreter: No such file
—or directory

Ensure that the file in question (createChannel.sh in this example) is encoded in the Unix format. This was
most likely caused by not setting core . autocrlf to false in your Git configuration (see Windows extras).
There are several ways of fixing this. If you have access to the vim editor for instance, open the file:

’vim ./fabric-samples/test-network/scripts/createChannel.sh

Then change its format by executing the following vim command:

’:set ff=unix

If you continue to see errors, share your logs on the fabric-questions channel on Hyperledger Rocket Chat or on
StackOverflow.

Before we begin, if you haven’t already done so, you may wish to check that you have all the Prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

Once you have the prerequisites installed, you are ready to download and install HyperLedger Fabric. While we work
on developing real installers for the Fabric binaries, we provide a script that will Install Samples, Binaries, and Docker
Images to your system. The script also will download the Docker images to your local registry.

After you have downloaded the Fabric Samples and Docker images to your local machine, you can get started working
with Fabric with the Using the Fabric test network tutorial.

5.4 Hyperledger Fabric smart contract (chaincode) APIs

Hyperledger Fabric offers a number of APIs to support developing smart contracts (chaincode) in various programming
languages. Smart contract APIs are available for Go, Node.js, and Java:

5.4. Hyperledger Fabric smart contract (chaincode) APls 127

prereqs.html#windows-extras
https://chat.hyperledger.org/home
https://stackoverflow.com/questions/tagged/hyperledger-fabric

hyperledger-fabricdocs Documentation, Release master

* Go contract-api.
* Node.js contract API and Node.js contract API documentation.

¢ Java contract API and Java contract API documentation.

5.5 Hyperledger Fabric application SDKs

Hyperledger Fabric offers a number of SDKs to support developing applications in various programming languages.
SDKs are available for Node.js and Java:

* Node.js SDK and Node.js SDK documentation.
¢ Java SDK and Java SDK documentation.

Prerequisites for developing with the SDKs can be found in the Node.js SDK README and Java SDK
README.

In addition, there are two more application SDKs that have not yet been officially released (for Python and Go), but
they are still available for downloading and testing:

* Python SDK.
* Go SDK.

Currently, Node.js, Java and Go support the new application programming model delivered in Hyperledger Fabric
vl4.

5.6 Hyperledger Fabric CA

Hyperledger Fabric provides an optional certificate authority service that you may choose to use to generate the
certificates and key material to configure and manage identity in your blockchain network. However, any CA that
can generate ECDSA certificates may be used.

128 Chapter 5. Getting Started

https://github.com/hyperledger/fabric-contract-api-go
https://github.com/hyperledger/fabric-chaincode-node
https://hyperledger.github.io/fabric-chaincode-node/
https://github.com/hyperledger/fabric-chaincode-java
https://hyperledger.github.io/fabric-chaincode-java/
https://github.com/hyperledger/fabric-sdk-node
https://hyperledger.github.io/fabric-sdk-node/
https://github.com/hyperledger/fabric-gateway-java
https://hyperledger.github.io/fabric-gateway-java/
https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://github.com/hyperledger/fabric-gateway-java/blob/master/README.md
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-go
http://hyperledger-fabric-ca.readthedocs.io/en/latest

CHAPTER O

Developing Applications

6.1 The scenario

Audience: Architects, Application and smart contract developers, Business professionals

In this topic, we’re going to describe a business scenario involving six organizations who use PaperNet, a commercial
paper network built on Hyperledger Fabric, to issue, buy and redeem commercial paper. We’re going to use the
scenario to outline requirements for the development of commercial paper applications and smart contracts used by
the participant organizations.

6.1.1 PaperNet network

PaperNet is a commercial paper network that allows suitably authorized participants to issue, trade, redeem and rate
commercial paper.

129

hyperledger-fabricdocs Documentation, Release master

Issue Buy/sell

MagnetoCorp Redeam BrokerHouse

Redeem

B Il B Il .

DigiBank R:Zf:m PaperNet R:Z;em HedgeMatic
rate
) Buy/sell
BigFund R:zeiem RateM
notify T

The PaperNet commercial paper network. Six organizations currently use PaperNet network to issue, buy, sell, redeem
and rate commercial paper. MagentoCorp issues and redeems commercial paper. DigiBank, BigFund, BrokerHouse
and HedgeMatic all trade commercial paper with each other. RateM provides various measures of risk for commercial

paper.

Let’s see how MagnetoCorp uses PaperNet and commercial paper to help its business.

6.1.2 Introducing the actors

MagnetoCorp is a well-respected company that makes self-driving electric vehicles. In early April 2020, MagnetoCorp
won a large order to manufacture 10,000 Model D cars for Daintree, a new entrant in the personal transport market.
Although the order represents a significant win for MagnetoCorp, Daintree will not have to pay for the vehicles until
they start to be delivered on November 1, six months after the deal was formally agreed between MagnetoCorp and
Daintree.

To manufacture the vehicles, MagnetoCorp will need to hire 1000 workers for at least 6 months. This puts a short term
strain on its finances — it will require an extra SM USD each month to pay these new employees. Commercial paper
is designed to help MagnetoCorp overcome its short term financing needs — to meet payroll every month based on the
expectation that it will be cash rich when Daintree starts to pay for its new Model D cars.

At the end of May, MagnetoCorp needs SM USD to meet payroll for the extra workers it hired on May 1. To do this, it
issues a commercial paper with a face value of SM USD with a maturity date 6 months in the future — when it expects
to see cash flow from Daintree. DigiBank thinks that MagnetoCorp is creditworthy, and therefore doesn’t require much
of a premium above the central bank base rate of 2%, which would value 4.95M USD today at SM USD in 6 months
time. It therefore purchases the MagnetoCorp 6 month commercial paper for 4.94M USD - a slight discount compared
to the 4.95M USD it is worth. DigiBank fully expects that it will be able to redeem 5SM USD from MagnetoCorp in
6 months time, making it a profit of 10K USD for bearing the increased risk associated with this commercial paper.
This extra 10K means it receives a 2.4% return on investment — significantly better than the risk free return of 2%.

At the end of June, when MagnetoCorp issues a new commercial paper for SM USD to meet June’s payroll, it is
purchased by BigFund for 4.94M USD. That’s because the commercial conditions are roughly the same in June as
they are in May, resulting in BigFund valuing MagnetoCorp commercial paper at the same price that DigiBank did in
May.

Each subsequent month, MagnetoCorp can issue new commercial paper to meet its payroll obligations, and these may
be purchased by DigiBank, or any other participant in the PaperNet commercial paper network — BigFund, HedgeMatic
or BrokerHouse. These organizations may pay more or less for the commercial paper depending on two factors — the

130 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

central bank base rate, and the risk associated with MagnetoCorp. This latter figure depends on a variety of factors
such as the production of Model D cars, and the creditworthiness of MagnetoCorp as assessed by RateM, a ratings
agency.

The organizations in PaperNet have different roles, MagnetoCorp issues paper, DigiBank, BigFund, HedgeMatic
and BrokerHouse trade paper and RateM rates paper. Organizations of the same role, such as DigiBank, Bigfund,
HedgeMatic and BrokerHouse are competitors. Organizations of different roles are not necessarily competitors, yet
might still have opposing business interest, for example MagentoCorp will desire a high rating for its papers to sell
them at a high price, while DigiBank would benefit from a low rating, such that it can buy them at a low price. As
can be seen, even a seemingly simple network such as PaperNet can have complex trust relationships. A blockchain
can help establish trust among organizations that are competitors or have opposing business interests that might lead
to disputes. Fabric in particular has the means to capture even fine-grained trust relationships.

Let’s pause the MagnetoCorp story for a moment, and develop the client applications and smart contracts that Pa-
perNet uses to issue, buy, sell and redeem commercial paper as well as capture the trust relationships between the
organizations. We’ll come back to the role of the rating agency, RateM, a little later.

6.2 Analysis

Audience: Architects, Application and smart contract developers, Business professionals

Let’s analyze commercial paper in a little more detail. PaperNet participants such as MagnetoCorp and DigiBank use
commercial paper transactions to achieve their business objectives — let’s examine the structure of a commercial paper
and the transactions that affect it over time. We will also consider which organizations in PaperNet need to sign off on
a transaction based on the trust relationships among the organizations in the network. Later we’ll focus on how money
flows between buyers and sellers; for now, let’s focus on the first paper issued by MagnetoCorp.

6.2.1 Commercial paper lifecycle

A paper 00001 is issued by MagnetoCorp on May 31. Spend a few moments looking at the first state of this paper,
with its different properties and values:

Issuer = MagnetoCorp

Paper = 00001

Owner = MagnetoCorp

Issue date = 31 May 2020
Maturity = 30 November 2020
Face value = 5M USD

Current state = issued

This paper state is a result of the issue transaction and it brings MagnetoCorp’s first commercial paper into existence!
Notice how this paper has a SM USD face value for redemption later in the year. See how the Issuer and Owner are
the same when paper 00001 is issued. Notice that this paper could be uniquely identified as MagnetoCorp00001 —
a composition of the Issuer and Paper properties. Finally, see how the property Current state = issued
quickly identifies the stage of MagnetoCorp paper 00001 in its lifecycle.

Shortly after issuance, the paper is bought by DigiBank. Spend a few moments looking at how the same commercial
paper has changed as a result of this buy transaction:

Issuer = MagnetoCorp

Paper = 00001

Owner = DigiBank

Issue date = 31 May 2020
Maturity date = 30 November 2020

(continues on next page)

6.2. Analysis 131

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Face value = OM USD
Current state = trading

The most significant change is that of Owner — see how the paper initially owned by MagnetoCorp is now owned
by DigiBank. We could imagine how the paper might be subsequently sold to BrokerHouse or HedgeMatic, and
the corresponding change to Owner. Note how Current state allow us to easily identify that the paper is now
trading.

After 6 months, if DigiBank still holds the commercial paper, it can redeem it with MagnetoCorp:

Issuer = MagnetoCorp

Paper = 00001

Owner = MagnetoCorp

Issue date = 31 May 2020
Maturity date = 30 November 2020
Face value = 5M USD

Current state = redeemed

This final redeem transaction has ended the commercial paper’s lifecycle — it can be considered closed. It is often
mandatory to keep a record of redeemed commercial papers, and the redeemed state allows us to quickly identify
these. The value of Owner of a paper can be used to perform access control on the redeem transaction, by comparing
the Owner against the identity of the transaction creator. Fabric supports this through the getCreator () chaincode
API. If Go is used as a chaincode language, the client identity chaincode library can be used to retrieve additional
attributes of the transaction creator.

6.2.2 Transactions

We’ve seen that paper 00001’s lifecycle is relatively straightforward — it moves between issued, trading and
redeemed as a result of an issue, buy, or redeem transaction.

These three transactions are initiated by MagnetoCorp and DigiBank (twice), and drive the state changes of paper
00001. Let’s have a look at the transactions that affect this paper in a little more detail:

Issue

Examine the first transaction initiated by MagnetoCorp:

Txn = issue

Issuer = MagnetoCorp

Paper = 00001

Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020

Face value = OM USD

See how the issue transaction has a structure with properties and values. This transaction structure is different to, but
closely matches, the structure of paper 00001. That’s because they are different things — paper 00001 reflects a state of
PaperNet that is a result of the issue transaction. It’s the logic behind the issue transaction (which we cannot see) that
takes these properties and creates this paper. Because the transaction creates the paper, it means there’s a very close
relationship between these structures.

The only organization that is involved in the issue transaction is MagnetoCorp. Naturally, MagnetoCorp needs to sign
off on the transaction. In general, the issuer of a paper is required to sign off on a transaction that issues a new paper.

132 Chapter 6. Developing Applications

https://github.com/hyperledger/fabric-chaincode-node/blob/master/fabric-shim/lib/stub.js#L293
https://github.com/hyperledger/fabric-chaincode-node/blob/master/fabric-shim/lib/stub.js#L293
https://github.com/hyperledger/fabric-chaincode-go/blob/master/pkg/cid/README.md

hyperledger-fabricdocs Documentation, Release master

Buy

Next, examine the buy transaction which transfers ownership of paper 00001 from MagnetoCorp to DigiBank:

Txn = buy

Issuer = MagnetoCorp

Paper = 00001

Current owner = MagnetoCorp

New owner = DigiBank

Purchase time = 31 May 2020 10:00:00 EST
Price = 4.94M USD

See how the buy transaction has fewer properties that end up in this paper. That’s because this transaction only
modifies this paper. It’s only New owner = DigiBank that changes as a result of this transaction; everything else
is the same. That’s OK — the most important thing about the buy transaction is the change of ownership, and indeed
in this transaction, there’s an acknowledgement of the current owner of the paper, MagnetoCorp.

You might ask why the Purchase time and Price properties are not captured in paper 00001? This comes
back to the difference between the transaction and the paper. The 4.94 M USD price tag is actually a property of the
transaction, rather than a property of this paper. Spend a little time thinking about this difference; it is not as obvious as
it seems. We’re going to see later that the ledger will record both pieces of information — the history of all transactions
that affect this paper, as well its latest state. Being clear on this separation of information is really important.

It’s also worth remembering that paper 00001 may be bought and sold many times. Although we’re skipping ahead a
little in our scenario, let’s examine what transactions we might see if paper 00001 changes ownership.

If we have a purchase by BigFund:

Txn = buy

Issuer = MagnetoCorp

Paper = 00001

Current owner = DigiBank

New owner = BigFund

Purchase time = 2 June 2020 12:20:00 EST
Price = 4.93M USD

Followed by a subsequent purchase by HedgeMatic:

Txn = buy

Issuer = MagnetoCorp

Paper = 00001

Current owner = BigFund

New owner = HedgeMatic

Purchase time = 3 June 2020 15:59:00 EST
Price = 4.90M USD

See how the paper owners changes, and how in our example, the price changes. Can you think of a reason why the
price of MagnetoCorp commercial paper might be falling?

Intuitively, a buy transaction demands that both the selling as well as the buying organization need to sign off on such
a transaction such that there is proof of the mutual agreement among the two parties that are part of the deal.

Redeem

The redeem transaction for paper 00001 represents the end of its lifecycle. In our relatively simple example, Hedge-
Matic initiates the transaction which transfers the commercial paper back to MagnetoCorp:

6.2. Analysis 133

hyperledger-fabricdocs Documentation, Release master

Txn = redeem

Issuer = MagnetoCorp

Paper = 00001

Current owner = HedgeMatic

Redeem time = 30 Nov 2020 12:00:00 EST

Again, notice how the redeem transaction has very few properties; all of the changes to paper 00001 can be calculated
data by the redeem transaction logic: the Issuer will become the new owner, and the Current state will
change to redeemed. The Current owner property is specified in our example, so that it can be checked against
the current holder of the paper.

From a trust perspective, the same reasoning of the buy transaction also applies to the redeem instruction: both
organizations involved in the transaction are required to sign off on it.

6.2.3 The Ledger

In this topic, we’ve seen how transactions and the resultant paper states are the two most important concepts in
PaperNet. Indeed, we’ll see these two fundamental elements in any Hyperledger Fabric distributed ledger — a world
state, that contains the current value of all objects, and a blockchain that records the history of all transactions that
resulted in the current world state.

The required sign-offs on transactions are enforced through rules, which are evaluated before appending a transaction
to the ledger. Only if the required signatures are present, Fabric will accept a transaction as valid.

You’re now in a great place translate these ideas into a smart contract. Don’t worry if your programming is a little
rusty, we’ll provide tips and pointers to understand the program code. Mastering the commercial paper smart contract
is the first big step towards designing your own application. Or, if you’re a business analyst who’s comfortable with a
little programming, don’t be afraid to keep dig a little deeper!

6.3 Process and Data Design

Audience: Architects, Application and smart contract developers, Business professionals

This topic shows you how to design the commercial paper processes and their related data structures in PaperNet.
Our analysis highlighted that modelling PaperNet using states and transactions provided a precise way to understand
what’s happening. We’re now going to elaborate on these two strongly related concepts to help us subsequently design
the smart contracts and applications of PaperNet.

6.3.1 Lifecycle

As we’ve seen, there are two important concepts that concern us when dealing with commercial paper; states and
transactions. Indeed, this is true for al/l blockchain use cases; there are conceptual objects of value, modeled as states,
whose lifecycle transitions are described by transactions. An effective analysis of states and transactions is an essential
starting point for a successful implementation.

We can represent the life cycle of a commercial paper using a state transition diagram:

134 Chapter 6. Developing Applications

../ledger/ledger.html
./analysis.html

hyperledger-fabricdocs Documentation, Release master

buy

redeem

issued trading redeemed

The state transition diagram for commercial paper. Commercial papers transition between issued, trading and re-
deemed states by means of the issue, buy and redeem transactions.

See how the state diagram describes how commercial papers change over time, and how specific transactions govern
the life cycle transitions. In Hyperledger Fabric, smart contracts implement transaction logic that transition commercial
papers between their different states. Commercial paper states are actually held in the ledger world state; so let’s take
a closer look at them.

6.3.2 Ledger state

Recall the structure of a commercial paper:

Issuer: MagnetoCorp

Paper: 00001

Owner: DigiBank

Issue date: 31 May 2020
Maturity date: 30 Nov 2020
Face wvalue: 5M USD
Current state: trading

A commercial paper can be represented as a set of properties, each with a value. Typically, some combination of these
properties will provide a unique key for each paper.

See how a commercial paper Paper property has value 00001, and the Face value property has value 5M USD.
Most importantly, the Current state property indicates whether the commercial paper is i ssued,t rading or
redeemed. In combination, the full set of properties make up the state of a commercial paper. Moreover, the entire
collection of these individual commercial paper states constitutes the ledger world state.

All ledger state share this form; each has a set of properties, each with a different value. This multi-property aspect
of states is a powerful feature — it allows us to think of a Fabric state as a vector rather than a simple scalar. We
then represent facts about whole objects as individual states, which subsequently undergo transitions controlled by
transaction logic. A Fabric state is implemented as a key/value pair, in which the value encodes the object properties
in a format that captures the object’s multiple properties, typically JSON. The ledger database can support advanced
query operations against these properties, which is very helpful for sophisticated object retrieval.

See how MagnetoCorp’s paper 00001 is represented as a state vector that transitions according to different transaction
stimuli:

6.3. Process and Data Design 135

../ledger/ledger.html#world-state
../ledger/ledger.html#ledger-world-state-database-options

hyperledger-fabricdocs Documentation, Release master

redeem

e I L gy S

Issuer: MagnetoCorp
Paper: 00001
Owner: MagnetoCorp

Issuer: MagnetoCorp
Paper: 00001
Owner: DigiBank

Issuer: MagnetoCorp
Paper: 00001
Owner: MagnetoCorp

(nil) Issue date: 31 May 2020 Issue date: 31 May 2020 Issue date: 31 May 2020
Maturity date: 30 Nowv 2020 Maturity date: 30 Nov 2020 Maturity date: 30 Nov 2020
Face value: 5M USD Face value: 5M USD Face value: 5M USD
Current state: issued Current state: trading Current state: redeemed

A commercial paper state is brought into existence and transitions as a result of different transactions. Hyperledger
Fabric states have multiple properties, making them vectors rather than scalars.

Notice how each individual paper starts with the empty state, which is technically a ni1 state for the paper, as it
doesn’t exist! See how paper 00001 is brought into existence by the issue transaction, and how it is subsequently
updated as a result of the buy and redeem transactions.

Notice how each state is self-describing; each property has a name and a value. Although all our commercial papers
currently have the same properties, this need not be the case for all time, as Hyperledger Fabric supports different
states having different properties. This allows the same ledger world state to contain different forms of the same asset
as well as different types of asset. It also makes it possible to update a state’s structure; imagine a new regulation that
requires an additional data field. Flexible state properties support the fundamental requirement of data evolution over
time.

6.3.3 State keys

In most practical applications, a state will have a combination of properties that uniquely identify it in a given context
— it’s key. The key for a PaperNet commercial paper is formed by a concatenation of the Issuer and paper
properties; so for MagnetoCorp’s first paper, it’s MagnetoCorp00001.

A state key allows us to uniquely identify a paper; it is created as a result of the issue transaction and subsequently
updated by buy and redeem. Hyperledger Fabric requires each state in a ledger to have a unique key.

When a unique key is not available from the available set of properties, an application-determined unique key is
specified as an input to the transaction that creates the state. This unique key is usually with some form of UUID,
which although less readable, is a standard practice. What’s important is that every individual state object in a ledger
must have a unique key.

Note: You should avoid using U+0000 (nil byte) in keys.

6.3.4 Multiple states

As we’ve seen, commercial papers in PaperNet are stored as state vectors in a ledger. It’s a reasonable requirement to
be able to query different commercial papers from the ledger; for example: find all the papers issued by MagnetoCorp,
or: find all the papers issued by MagnetoCorp in the redeemed state.

To make these kinds of search tasks possible, it’s helpful to group all related papers together in a logical list. The
PaperNet design incorporates the idea of a commercial paper list — a logical container which is updated whenever
commercial papers are issued or otherwise changed.

Logical representation

It’s helpful to think of all PaperNet commercial papers being in a single list of commercial papers:

136 Chapter 6. Developing Applications

https://en.wikipedia.org/wiki/Null_(SQL)
https://en.wikipedia.org/wiki/Universally_unique_identifier

hyperledger-fabricdocs Documentation, Release master

commercial paper: MagnetoCorp paper 00004

Issuer : Paper:
MagnetoCorp 00004

Owner: Issue date: Maturity date: Face value:
DigiBank 31 August 2020 31 March 2021 5m USD

Current state:

issued

commercial paper list: org.papernet.paper

Issuer : Paper: Owner: Issue date: Maturity date: Face value: Current state:
MagnetoCorp 00001 DigiBank 31 May 2020 31 December 2020 | 5m USD trading

i Issuer : Paper: Owner: Issue date: Maturity date: Face value: Current state:
MagnetoCorp 00002 BigFund 30June 2020 31 January 2021 5m USD trading

Issuer : Paper: Owner: Issue date: Maturity date: Face value: Current state:
MagnetoCorp 00003 BrokerHouse 31 July 2020 28 February 2021 Sm USD trading

MagnetoCorp’s newly created commercial paper 00004 is added to the list of existing commercial papers.

New papers can be added to the list as a result of an issue transaction, and papers already in the list can be updated
with buy or redeem transactions. See how the list has a descriptive name: org.papernet .papers; it’s a really
good idea to use this kind of DN'S name because well-chosen names will make your blockchain designs intuitive to
other people. This idea applies equally well to smart contract names.

Physical representation

While it’s correct to think of a single list of papers in PaperNet — org.papernet . papers — lists are best imple-
mented as a set of individual Fabric states, whose composite key associates the state with its list. In this way, each
state’s composite key is both unique and supports effective list query.

< key

v
A

value

org.papernet.paperMagnetoCorp00001

Issuer : MagnetoCorp, Paper: 00001, Owner: DigiBank, Issue date: 31 May 2020,
Maturity date: 31 December 2020, Face value: 5m USD, Current state: trading

org.papernet.paperMagnetoCorp00002

Issuer : MagnetoCorp, Paper: 00002, Owner: BigFund, Issue date:, 30 June 2020,
Maturity date: 31 January 2021, Face value: 5m USD, Current state: trading

org.papernet.paperMagnetoCorp00003

Issuer : MagnetoCorp, Paper: 00003, Owner: BrokerHouse, Issue date: 31 July 2020,,
Maturity date: 28 February 2021, Face value: 5m USD, Current state: trading

org.papernet.paperMagnetoCorp00004

Issuer : MagnetoCorp, Paper: 00004, Owner: DigiBank, Issue date: 31 August 2020,
Maturity date: 31 March 2021, Face value: 5m USD, Current state: issued

Representing a list of PaperNet commercial papers as a set of distinct Hyperledger Fabric states

Notice how each paper in the list is represented by a vector state, with a unique composite key formed by the concate-

nation of org.papernet .paper, Issuer and Paper properties. This structure is helpful for two reasons:

« It allows us to examine any state vector in the ledger to determine which list it’s in, without reference to a
separate list. It’s analogous to looking at set of sports fans, and identifying which team they support by the
colour of the shirt they are wearing. The sports fans self-declare their allegiance; we don’t need a list of fans.

* Hyperledger Fabric internally uses a concurrency control mechanism to update a ledger, such that keeping
papers in separate state vectors vastly reduces the opportunity for shared-state collisions. Such collisions require
transaction re-submission, complicate application design, and decrease performance.

6.3. Process and Data Design

137

https://en.wikipedia.org/wiki/Domain_Name_System
./contractname.html

hyperledger-fabricdocs Documentation, Release master

This second point is actually a key take-away for Hyperledger Fabric; the physical design of state vectors is very
important to optimum performance and behaviour. Keep your states separate!

6.3.5 Trust relationships

We have discussed how the different roles in a network, such as issuer, trader or rating agencies as well as different
business interests determine who needs to sign off on a transaction. In Fabric, these rules are captured by so-called
endorsement policies. The rules can be set on a chaincode granularity, as well as for individual state keys.

This means that in PaperNet, we can set one rule for the whole namespace that determines which organizations can
issue new papers. Later, rules can be set and updated for individual papers to capture the trust relationships of buy and
redeem transactions.

In the next topic, we will show you how to combine these design concepts to implement the PaperNet commercial
paper smart contract, and then an application in exploits it!

6.4 Smart Contract Processing

Audience: Architects, Application and smart contract developers

At the heart of a blockchain network is a smart contract. In PaperNet, the code in the commercial paper smart contract
defines the valid states for commercial paper, and the transaction logic that transition a paper from one state to another.
In this topic, we’re going to show you how to implement a real world smart contract that governs the process of issuing,
buying and redeeming commercial paper.

We’re going to cover:
o What is a smart contract and why it’s important
* How to define a smart contract
* How to define a transaction
* How to implement a transaction
* How to represent a business object in a smart contract
* How to store and retrieve an object in the ledger

If you’d like, you can download the sample and even run it locally. It is written in JavaScript and Java, but the logic
is quite language independent, so you’ll easily be able to see what’s going on! (The sample will become available for
Go as well.)

6.4.1 Smart Contract

A smart contract defines the different states of a business object and governs the processes that move the object between
these different states. Smart contracts are important because they allow architects and smart contract developers
to define the key business processes and data that are shared across the different organizations collaborating in a
blockchain network.

In the PaperNet network, the smart contract is shared by the different network participants, such as MagnetoCorp and
DigiBank. The same version of the smart contract must be used by all applications connected to the network so that
they jointly implement the same shared business processes and data.

138 Chapter 6. Developing Applications

endorsementpolicies.html
../install.html
../tutorial/commercial_paper.html

hyperledger-fabricdocs Documentation, Release master

6.4.2 Implementation Languages
There are two runtimes that are supported, the Java Virtual Machine and Node.js. This gives the opportunity to use
one of JavaScript, TypeScript, Java or any other language that can run on one of these supported runtimes.

In Java and TypeScript, annotations or decorators are used to provide information about the smart contract and its
structure. This allows for a richer development experience — for example, author information or return types can
be enforced. Within JavaScript, conventions must be followed, therefore, there are limitations around what can be
determined automatically.

Examples here are given in both JavaScript and Java.

6.4.3 Contract class
A copy of the PaperNet commercial paper smart contract is contained in a single file. View it with your browser, or
open it in your favorite editor if you’ve downloaded it.

* papercontract. js - JavaScript version

e CommercialPaperContract. java - Java version

You may notice from the file path that this is MagnetoCorp’s copy of the smart contract. MagnetoCorp and DigiBank
must agree on the version of the smart contract that they are going to use. For now, it doesn’t matter which organiza-
tion’s copy you use, they are all the same.

Spend a few moments looking at the overall structure of the smart contract; notice that it’s quite short! Towards the
top of the file, you’ll see that there’s a definition for the commercial paper smart contract:

JavaScript

class CommercialPaperContract extends Contract {...}

Java

@Contract (...)
@Default
public class CommercialPaperContract implements ContractInterface {...}

The CommercialPaperContract class contains the transaction definitions for commercial paper —issue, buy and
redeem. It’s these transactions that bring commercial papers into existence and move them through their lifecycle.
We’ll examine these fransactions soon, but for now notice for JavaScript, that the CommericalPaperContract
extends the Hyperledger Fabric Contract class.

With Java, the class must be decorated with the @Contract (...) annotation. This provides the opportunity to
supply additional information about the contract, such as license and author. The @Default () annotation indicates
that this contract class is the default contract class. Being able to mark a contract class as the default contract class is
useful in some smart contracts which have multiple contract classes.

If you are using a TypeScript implementation, there are similar @Contract (.. .) annotations that fulfill the same
purpose as in Java.

For more information on the available annotations, consult the available API documentation:
¢ API documentation for Java smart contracts
¢ API documentation for Node.js smart contracts

The Fabric contract class is also available for smart contracts written in Go. While we do not discuss the Go contract
API in this topic, it uses similar concepts as the API for Java and JavaScript:

¢ API documentation for Go smart contracts

6.4. Smart Contract Processing 139

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/papercontract.js
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp//contract-java/src/main/java/org/example/CommercialPaperContract.java
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-contract-api.Contract.html
https://hyperledger.github.io/fabric-chaincode-java/
https://hyperledger.github.io/fabric-chaincode-node/
https://github.com/hyperledger/fabric-contract-api-go

hyperledger-fabricdocs Documentation, Release master

These classes, annotations, and the Context class, were brought into scope earlier:

JavaScript

const { Contract, Context } = require('fabric-contract-api');

Java

import org.hyperledger.fabric.contract.Context;

import org.hyperledger.fabric.contract.ContractInterface;
import org.hyperledger.fabric.contract.annotation.Contact;
import org.hyperledger.fabric.contract.annotation.Contract;
import org.hyperledger.fabric.contract.annotation.Default;
import org.hyperledger.fabric.contract.annotation.Info;

import org.hyperledger.fabric.contract.annotation.License;
import org.hyperledger.fabric.contract.annotation.Transaction;

Our commercial paper contract will use built-in features of these classes, such as automatic method invocation, a
per-transaction context, transaction handlers, and class-shared state.

Notice also how the JavaScript class constructor uses its superclass to initialize itself with an explicit contract name:

constructor () {
super ('org.papernet.commercialpaper');

With the Java class, the constructor is blank as the explicit contract name can be specified in the @Contract ()
annotation. If it’s absent, then the name of the class is used.

Most importantly, org.papernet.commercialpaper is very descriptive — this smart contract is the agreed
definition of commercial paper for all PaperNet organizations.

Usually there will only be one smart contract per file — contracts tend to have different lifecycles, which makes it sen-
sible to separate them. However, in some cases, multiple smart contracts might provide syntactic help for applications,
e.g. EuroBond, DollarBond, YenBond, but essentially provide the same function. In such cases, smart contracts
and transactions can be disambiguated.

6.4.4 Transaction definition

Within the class, locate the issue method.

JavaScript

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {...

=}

Java

@Transaction

public CommercialPaper issue (CommercialPaperContext ctx,
String issuer,
String paperNumber,
String issueDateTime,
String maturityDateTime,
int facevalue) {...}

The Java annotation @Transaction is used to mark this method as a transaction definition; TypeScript has an
equivalent annotation.

140 Chapter 6. Developing Applications

./transactioncontext.html
./transactionhandler.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super
./contractname.html

hyperledger-fabricdocs Documentation, Release master

This function is given control whenever this contract is called to i ssue a commercial paper. Recall how commercial
paper 00001 was created with the following transaction:

Txn = issue

Issuer = MagnetoCorp

Paper = 00001

Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020

Face value = OM USD

We’ve changed the variable names for programming style, but see how these properties map almost directly to the
issue method variables.

The issue method is automatically given control by the contract whenever an application makes a request to issue a
commercial paper. The transaction property values are made available to the method via the corresponding variables.
See how an application submits a transaction using the Hyperledger Fabric SDK in the application topic, using a
sample application program.

You might have noticed an extra variable in the issue definition — ctx. It’s called the transaction context, and it’s
always first. By default, it maintains both per-contract and per-transaction information relevant to transaction logic.
For example, it would contain MagnetoCorp’s specified transaction identifier, a MagnetoCorp issuing user’s digital
certificate, as well as access to the ledger APL

See how the smart contract extends the default transaction context by implementing its own createContext ()
method rather than accepting the default implementation:

JavaScript

createContext () {
return new CommercialPaperContext ()

Java

@Override
public Context createContext (ChaincodeStub stub) {
return new CommercialPaperContext (stub);

This extended context adds a custom property paperList to the defaults:

JavaScript

class CommercialPaperContext extends Context {

constructor () {
super () ;
// All papers are held in a list of papers
this.paperlist = new PaperlList (this);

Java

class CommercialPaperContext extends Context {
public CommercialPaperContext (ChaincodeStub stub) ({
super (stub) ;
this.paperlist = new PaperList (this);

(continues on next page)

6.4. Smart Contract Processing 141

./application.html
./transactioncontext.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

public PaperlList paperlist;

We’ll soon see how ctx.paperList can be subsequently used to help store and retrieve all PaperNet commercial
papers.

To solidify your understanding of the structure of a smart contract transaction, locate the buy and redeem transaction
definitions, and see if you can see how they map to their corresponding commercial paper transactions.

The buy transaction:

Txn = buy

Issuer = MagnetoCorp

Paper = 00001

Current owner = MagnetoCorp

New owner = DigiBank

Purchase time = 31 May 2020 10:00:00 EST
Price = 4.94M USD

JavaScript

async buy (ctx, issuer, paperNumber, currentOwner, newOwner, price, purchaseTime) {...}

Java

@Transaction
public CommercialPaper buy (CommercialPaperContext ctx,
String issuer,
String paperNumber,
String currentOwner,
String newOwner,
int price,
String purchaseDateTime) {...}

The redeem transaction:

Txn = redeem

Issuer = MagnetoCorp

Paper = 00001

Redeemer = DigiBank

Redeem time = 31 Dec 2020 12:00:00 EST

JavaScript

async redeem(ctx, issuer, paperNumber, redeemingOwner, redeemDateTime) {...}

Java

@Transaction

public CommercialPaper redeem(CommercialPaperContext ctx,
String issuer,
String paperNumber,
String redeemingOwner,
String redeemDateTime) {...}

In both cases, observe the 1:1 correspondence between the commercial paper transaction and the smart contract method
definition.

142 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

All of the JavaScript functions use the async and await keywords which allow JavaScript functions to be treated as
if they were synchronous function calls.

6.4.5 Transaction logic

Now that you’ve seen how contracts are structured and transactions are defined, let’s focus on the logic within the
smart contract.

Recall the first issue transaction:

Txn = issue

Issuer = MagnetoCorp

Paper = 00001

Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020

Face value = 5M USD

It results in the issue method being passed control:

JavaScript

async issue (ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {

// create an instance of the paper
let paper = CommercialPaper.createlnstance (issuer, paperNumber, issueDateTime,
—maturityDateTime, faceValue);

// Smart contract, rather than paper, moves paper into ISSUED state
paper.setlIssued();

// Newly issued paper is owned by the issuer
paper.setOwner (issuer) ;

// Add the paper to the list of all similar commercial papers in the ledger world_
—~state
await ctx.paperlList.addPaper (paper) ;

// Must return a serialized paper to caller of smart contract
return paper.toBuffer();

Java

@Transaction

public CommercialPaper issue (CommercialPaperContext ctx,
String issuer,
String paperNumber,
String issueDateTime,
String maturityDateTime,
int faceValue) {

System.out.println (ctx);

// create an instance of the paper
CommercialPaper paper = CommercialPaper.createlnstance (issuer, paperNumber,
—issueDateTime, maturityDateTime,
facevValue, issuer,"");

(continues on next page)

6.4. Smart Contract Processing 143

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

// Smart contract, rather than paper, moves paper into ISSUED state
paper.setlssued() ;

// Newly issued paper is owned by the issuer
paper.setOwner (issuer) ;

System.out.println (paper);

// Add the paper to the list of all similar commercial papers in the ledger
// world state

ctx.paperlist.addPaper (paper) ;

// Must return a serialized paper to caller of smart contract
return paper;

The logic is simple: take the transaction input variables, create a new commercial paper paper, add it to the list of all
commercial papers using paperList, and return the new commercial paper (serialized as a buffer) as the transaction
response.

See how paperList is retrieved from the transaction context to provide access to the list of commercial papers.
issue (), buy () and redeem () continually re-access ctx.paperList to keep the list of commercial papers
up-to-date.

The logic for the buy transaction is a little more elaborate:

JavaScript

async buy (ctx, issuer, paperNumber, currentOwner, newOwner, price, purchaseDateTime) {

// Retrieve the current paper using key fields provided
let paperKey = CommercialPaper.makeKey ([issuer, paperNumber]);
let paper = await ctx.paperlist.getPaper (paperKey);

// Validate current owner
if (paper.getOwner () !== currentOwner) {
throw new Error ('Paper ' + issuer + paperNumber + ' is not owned by ' +
—currentOwner) ;

}

[

// First buy moves state from ISSUED to TRADING
if (paper.isIssued()) {
paper.setTrading () ;

// Check paper is not already REDEEMED

if (paper.isTrading()) |
paper.setOwner (newOwner) ;
} else {
throw new Error ('Paper ' + issuer + paperNumber + ' is not trading. Current
—state = ' +paper.getCurrentState());

}

// Update the paper
await ctx.paperList.updatePaper (paper);
return paper.toBuffer();

144 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

Java

@Transaction
public CommercialPaper buy (CommercialPaperContext ctx,
String issuer,
String paperNumber,
String currentOwner,
String newOwner,
int price,
String purchaseDateTime) {

// Retrieve the current paper using key fields provided
String paperKey = State.makeKey (new String[] { paperNumber });
CommercialPaper paper = ctx.paperlList.getPaper (paperKey);

// Validate current owner
if (!paper.getOwner () .equals (currentOwner)) {
throw new RuntimeException ("Paper " + issuer + paperNumber + " is not owned,_
—by " + currentOwner) ;

// First buy moves state from ISSUED to TRADING
if (paper.isIssued()) {
paper.setTrading();

// Check paper is not already REDEEMED
if (paper.isTrading()) {

paper.setOwner (newOwner) ;
} else {

throw new RuntimeException (

"Paper " + issuer + paperNumber + " is not trading. Current state =
—+ paper.getState());

}

// Update the paper
ctx.paperList.updatePaper (paper) ;
return paper;

n
—

See how the transaction checks currentOwner and that paper is TRADING before changing the owner with
paper.setOwner (newOwner) . The basic flow is simple though — check some pre-conditions, set the new owner,
update the commercial paper on the ledger, and return the updated commercial paper (serialized as a buffer) as the

transaction response.

Why don’t you see if you can understand the logic for the redeem transaction?

6.4.6 Representing an object

We’ve seen how to define and implement the issue, buy and redeem transactions using the CommercialPaper and

PaperList classes. Let’s end this topic by seeing how these classes work.
Locate the CommercialPaper class:

JavaScript In the paper.js file:

class CommercialPaper extends State {...}

6.4. Smart Contract Processing

145

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/paper.js

hyperledger-fabricdocs Documentation, Release master

Java In the CommercialPaper.java file:

@DataType ()
public class CommercialPaper extends State {...}

This class contains the in-memory representation of a commercial paper state. See how the createInstance
method initializes a new commercial paper with the provided parameters:

JavaScript

static createInstance (issuer, paperNumber, issueDateTime, maturityDateTime,

—faceValue) {
return new CommercialPaper ({ issuer, paperNumber, issueDateTime, maturityDateTime,

—faceValue });

}

Java

public static CommercialPaper createlnstance (String issuer, String paperNumber,

—String issueDateTime,
String maturityDateTime, int faceValue, String owner, String state) {

return new CommercialPaper ().setIssuer (issuer) .setPaperNumber (paperNumber) .
—setMaturityDateTime (maturityDateTime)
.setFaceValue (faceValue) .setKey () .setIssueDateTime (issueDateTime) .

—setOwner (owner) .setState (state) ;

}

Recall how this class was used by the issue transaction:

JavaScript

let paper = CommercialPaper.createlnstance (issuer, paperNumber, issueDateTime,
—maturityDateTime, faceValue);

Java

CommercialPaper paper = CommercialPaper.createlnstance (issuer, paperNumber,
—issueDateTime, maturityDateTime,
facevValue, issuer,"");

See how every time the issue transaction is called, a new in-memory instance of a commercial paper is created con-
taining the transaction data.

A few important points to note:
* This is an in-memory representation; we’ll see later how it appears on the ledger.

e The CommercialPaper class extends the State class. State is an application-defined class which creates
a common abstraction for a state. All states have a business object class which they represent, a composite key,
can be serialized and de-serialized, and so on. State helps our code be more legible when we are storing more
than one business object type on the ledger. Examine the State class in the state. js file.

* A paper computes its own key when it is created — this key will be used when the ledger is accessed. The key is
formed from a combination of i ssuer and paperNumber.

constructor (obj) {
super (CommercialPaper.getClass (), [obj.issuer, obj.paperNumber]);
Object.assign (this, obj);

146 Chapter 6. Developing Applications

https://github.com/hyperledger/fabric-samples/blob/release-1.4/commercial-paper/organization/magnetocorp/contract-java/src/main/java/org/example/CommercialPaper.java
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/ledger-api/state.js

hyperledger-fabricdocs Documentation, Release master

* A paper is moved to the ISSUED state by the transaction, not by the paper class. That’s because it’s the smart
contract that governs the lifecycle state of the paper. For example, an import transaction might create a new
set of papers immediately in the TRADING state.

The rest of the CommercialPaper class contains simple helper methods:

getOwner () {
return this.owner;

Recall how methods like this were used by the smart contract to move the commercial paper through its lifecycle. For
example, in the redeem transaction we saw:

if (paper.getOwner () === redeemingOwner) {
paper.setOwner (paper.getIssuer());
paper.setRedeemed () ;

6.4.7 Access the ledger

Now locate the PaperList class in the paperlist. js file:

class PaperList extends Statelist {

This utility class is used to manage all PaperNet commercial papers in Hyperledger Fabric state database. The Pa-
perList data structures are described in more detail in the architecture topic.

Like the CommercialPaper class, this class extends an application-defined StateList class which creates a
common abstraction for a list of states — in this case, all the commercial papers in PaperNet.

The addPaper () method is a simple veneer over the StateList.addState () method:

async addPaper (paper) {
return this.addState (paper) ;

You can see in the StateList. js file how the StateList class uses the Fabric APl putState () to write the
commercial paper as state data in the ledger:

async addState (state) {
let key = this.ctx.stub.createCompositeKey (this.name, state.getSplitKey());
let data = State.serialize(state);
await this.ctx.stub.putState (key, data);

Every piece of state data in a ledger requires these two fundamental elements:

* Key: key is formed with createCompositeKey () using a fixed name and the key of state. The name
was assigned when the PaperList object was constructed, and state.getSplitKey () determines each
state’s unique key.

e Data: data is simply the serialized form of the commercial paper state, created using the State.
serialize () utility method. The State class serializes and deserializes data using JSON, and the State’s
business object class as required, in our case CommercialPaper, again set when the PaperList object
was constructed.

6.4. Smart Contract Processing 147

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/paperlist.js
./architecture.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/ledger-api/statelist.js

hyperledger-fabricdocs Documentation, Release master

Notice how a StateList doesn’t store anything about an individual state or the total list of states — it delegates all
of that to the Fabric state database. This is an important design pattern — it reduces the opportunity for ledger MVCC
collisions in Hyperledger Fabric.

The StateList get State () and updateState () methods work in similar ways:

async getState (key) {
let ledgerKey = this.ctx.stub.createCompositeKey (this.name, State.splitKey(key));
let data = await this.ctx.stub.getState (ledgerKey);
let state = State.deserialize(data, this.supportedClasses);
return state;

async updateState (state) {
let key = this.ctx.stub.createCompositeKey (this.name, state.getSplitKey());
let data = State.serialize(state);
await this.ctx.stub.putState (key, data);

See how they use the Fabric APIs putState (), getState () and createCompositeKey () to access the
ledger. We’ll expand this smart contract later to list all commercial papers in paperNet — what might the method look
like to implement this ledger retrieval?

That’s it! In this topic you’ve understood how to implement the smart contract for PaperNet. You can move to the next
sub topic to see how an application calls the smart contract using the Fabric SDK.

6.5 Application

Audience: Architects, Application and smart contract developers

An application can interact with a blockchain network by submitting transactions to a ledger or querying ledger con-
tent. This topic covers the mechanics of how an application does this; in our scenario, organizations access PaperNet
using applications which invoke issue, buy and redeem transactions defined in a commercial paper smart contract.
Even though MagnetoCorp’s application to issue a commercial paper is basic, it covers all the major points of under-
standing.

In this topic, we’re going to cover:
e The application flow to invoke a smart contract
* How an application uses a wallet and identity
* How an application connects using a gateway
* How to access a particular network
* How to construct a transaction request
* How to submit a transaction
* How to process a transaction response

To help your understanding, we’ll make reference to the commercial paper sample application provided with Hyper-
ledger Fabric. You can download it and run it locally. It is written in both JavaScript and Java, but the logic is quite
language independent, so you’ll easily be able to see what’s going on! (The sample will become available for Go as
well.)

148 Chapter 6. Developing Applications

../readwrite.html
../readwrite.html
../install.html
../tutorial/commercial_paper.html

hyperledger-fabricdocs Documentation, Release master

6.5.1 Basic Flow

An application interacts with a blockchain network using the Fabric SDK. Here’s a simplified diagram of how an
application invokes a commercial paper smart contract:

Application SDK Smart Contract

CommercialPaperContract {

Select identity from wallet ---t+» issue (ctx, issuer, paperNumber...) {
1
1
1
Connect to network gateway Ve d
o
1
Access PaperNet network :i buy (ctx, issuer, paperNumber...) {
o
Construct issue request i ' }
1
[
[
Submit issue transaction e&------- - redeem (ctx, issuer, paperNumber...) {
1
1
1
1

Process issue response “«-------

}

A PaperNet application invokes the commercial paper smart contract to submit an issue transaction request.
An application has to follow six basic steps to submit a transaction:

* Select an identity from a wallet

* Connect to a gateway

* Access the desired network

 Construct a transaction request for a smart contract

* Submit the transaction to the network

* Process the response

You're going to see how a typical application performs these six steps using the Fabric SDK. You’ll find the application
code in the i ssue. js file. View it in your browser, or open it in your favourite editor if you’ve downloaded it. Spend
a few moments looking at the overall structure of the application; even with comments and spacing, it’s only 100 lines
of code!

6.5.2 Wallet

Towards the top of issue. js, you’ll see two Fabric classes are brought into scope:

’const { Wallets, Gateway } = require('fabric-network");

You can read about the fabric—-network classes in the node SDK documentation, but for now, let’s see how they
are used to connect MagnetoCorp’s application to PaperNet. The application uses the Fabric Wallet class as follows:

’const wallet = await Wallets.newFileSystemWallet ('../identity/user/isabella/wallet'");

See how wallet locates a wallet in the local filesystem. The identity retrieved from the wallet is clearly for a user
called Isabella, who is using the issue application. The wallet holds a set of identities — X.509 digital certificates —

6.5. Application 149

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/application/issue.js
https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.html
./wallet.html

hyperledger-fabricdocs Documentation, Release master

which can be used to access PaperNet or any other Fabric network. If you run the tutorial, and look in this directory,
you’ll see the identity credentials for Isabella.

Think of a wallet holding the digital equivalents of your government ID, driving license or ATM card. The X.509
digital certificates within it will associate the holder with a organization, thereby entitling them to rights in a network
channel. For example, I sabella might be an administrator in MagnetoCorp, and this could give her more privileges
than a different user — Balaji from DigiBank. Moreover, a smart contract can retrieve this identity during smart
contract processing using the transaction context.

Note also that wallets don’t hold any form of cash or tokens — they hold identities.

6.5.3 Gateway

The second key class is a Fabric Gateway. Most importantly, a gateway identifies one or more peers that provide
access to a network — in our case, PaperNet. See how issue. js connects to its gateway:

await gateway.connect (connectionProfile, connectionOptions);

gateway.connect () has two important parameters:

¢ connectionProfile: the file system location of a connection profile that identifies a set of peers as a gateway to
PaperNet

» connectionOptions: a set of options used to control how issue. js interacts with PaperNet

See how the client application uses a gateway to insulate itself from the network topology, which might change. The
gateway takes care of sending the transaction proposal to the right peer nodes in the network using the connection
profile and connection options.

Spend a few moments examining the connection profile ./gateway/connectionProfile.yaml. It uses
YAML, making it easy to read.

It was loaded and converted into a JSON object:

let connectionProfile = yaml.safeload(file.readFileSync('./gateway/connectionProfile.
—yaml', 'utf8'));

Right now, we’re only interested in the channels: and peers: sections of the profile: (We’ve modified the details
slightly to better explain what’s happening.)

channels:
papernet:
peers:
peerl.magnetocorp.com:
endorsingPeer: true
eventSource: true

peer2.digibank.com:
endorsingPeer: true
eventSource: true

peers:
peerl.magnetocorp.com:
url: grpcs://localhost:7051
grpcOptions:
ssl-target-name-override: peerl.magnetocorp.com
request-timeout: 120
tlsCACerts:

(continues on next page)

150 Chapter 6. Developing Applications

./wallet.html
./transactioncontext.html
./gateway.html
./connectionprofile.html
./connectionprofile.html
./connectionprofile.html
./connectionoptions.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml
http://yaml.org/spec/1.2/spec.html#Preview

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

path: certificates/magnetocorp/magnetocorp.com-cert.pem

peer2.digibank.com:
url: grpcs://localhost:8051
grpcOptions:
ssl-target—-name-override: peerl.digibank.com
tlsCACerts:
path: certificates/digibank/digibank.com-cert.pem

See how channel : identifies the PaperNet : network channel, and two of its peers. MagnetoCorp has peerl.
magenetocorp.comand DigiBank has peer?2.digibank . com, and both have the role of endorsing peers. Link
to these peers via the peers: key, which contains details about how to connect to them, including their respective
network addresses.

The connection profile contains a lot of information — not just peers — but network channels, network orderers, organi-
zations, and CAs, so don’t worry if you don’t understand all of it!

Let’s now turn our attention to the connectionOptions object:

let connectionOptions = {
identity: userName,
wallet: wallet,
discovery: { enabled:true, asLocalhost: true }

}i

See how it specifies that identity, userName, and wallet, wallet, should be used to connect to a gateway. These
were assigned values earlier in the code.

There are other connection options which an application could use to instruct the SDK to act intelligently on its behalf.
For example:

let connectionOptions = {
identity: userName,
wallet: wallet,
eventHandlerOptions: {
commitTimeout: 100,
strategy: EventStrategies.MSPID_SCOPE_ANYFORTX

}y

Here, commitTimeout tells the SDK to wait 100 seconds to hear whether a transaction has been commit-
ted. And strategy: EventStrategies.MSPID_SCOPE_ANYFORTX specifies that the SDK can no-
tify an application after a single MagnetoCorp peer has confirmed the transaction, in contrast to strategy:
EventStrategies.NETWORK_SCOPE_ALLFORTX which requires that all peers from MagnetoCorp and Di-
giBank to confirm the transaction.

If you’d like to, read more about how connection options allow applications to specify goal-oriented behaviour without
having to worry about how it is achieved.

6.5.4 Network channel

The peers defined in the gateway connectionProfile.yaml provide issue. js with access to PaperNet. Be-
cause these peers can be joined to multiple network channels, the gateway actually provides the application with access
to multiple network channels!

See how the application selects a particular channel:

6.5. Application 151

./connectionoptions.html
./connectionoptions.html

hyperledger-fabricdocs Documentation, Release master

’const network = await gateway.getNetwork ('PaperNet');

From this point onwards, network will provide access to PaperNet. Moreover, if the application wanted to access
another network, BondNet, at the same time, it is easy:

’const network2 = await gateway.getNetwork ('BondNet');

Now our application has access to a second network, BondNet, simultaneously with PaperNet!

We can see here a powerful feature of Hyperledger Fabric — applications can participate in a network of networks, by
connecting to multiple gateway peers, each of which is joined to multiple network channels. Applications will have
different rights in different channels according to their wallet identity provided in gateway.connect ().

6.5.5 Construct request

The application is now ready to issue a commercial paper. To do this, it’'s going to use
CommercialPaperContract and again, its fairly straightforward to access this smart contract:

const contract = await network.getContract ('papercontract', 'org.papernet.
—commercialpaper');

Note how the application provides a name — papercontract — and an explicit contract name: org.papernet.
commercialpaper! We see how a contract name picks out one contract from the papercontract. js chain-
code file that contains many contracts. In PaperNet, papercontract . js was installed and deployed to the channel
with the name papercontract, and if you’re interested, read how to deploy a chaincode containing multiple smart
contracts.

If our application simultaneously required access to another contract in PaperNet or BondNet this would be easy:

const euroContract = await network.getContract ('EuroCommercialPaperContract');

const bondContract = await network2.getContract ('BondContract');

In these examples, note how we didn’t use a qualifying contract name — we have only one smart contract per file, and
getContract () will use the first contract it finds.

Recall the transaction MagnetoCorp uses to issue its first commercial paper:

Txn = issue

Issuer = MagnetoCorp

Paper = 00001

Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020

Face value = OM USD

Let’s now submit this transaction to PaperNet!

6.5.6 Submit transaction

Submitting a transaction is a single method call to the SDK:

const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001
', '2020-05-31', '2020-11-30', '5000000");

152 Chapter 6. Developing Applications

./contractname.html
../chaincode_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

See how the submitTransaction () parameters match those of the transaction request. It’s these values that
will be passed to the i ssue () method in the smart contract, and used to create a new commercial paper. Recall its
signature:

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {...
<}

It might appear that a smart contract receives control shortly after the application issues submitTransaction (),
but that’s not the case. Under the covers, the SDK uses the connectionOptions and connectionProfile
details to send the transaction proposal to the right peers in the network, where it can get the required endorsements.
But the application doesn’t need to worry about any of this — it just issues submit Transaction and the SDK takes
care of it all!

Note that the submitTransaction API includes a process for listening for transaction commits. Listening for
commits is required because without it, you will not know whether your transaction has successfully been orderered,
validated, and committed to the ledger.

Let’s now turn our attention to how the application handles the response!

6.5.7 Process response

Recall from papercontract . js how the issue transaction returns a commercial paper response:

’ return paper.toBuffer();

You’ll notice a slight quirk — the new paper needs to be converted to a buffer before it is returned to the application.
Notice how issue. js uses the class method CommercialPaper.fromBuffer () to rehydrate the response
buffer as a commercial paper:

let paper = CommercialPaper.fromBuffer (issueResponse);

This allows paper to be used in a natural way in a descriptive completion message:

console.log(${paper.issuer) commercial paper : paper.paperNumber/ successfully
—issued for value paper.facevalue/) ;

See how the same paper class has been used in both the application and smart contract — if you structure your code
like this, it’1l really help readability and reuse.

As with the transaction proposal, it might appear that the application receives control soon after the smart contract
completes, but that’s not the case. Under the covers, the SDK manages the entire consensus process, and notifies the
application when it is complete according to the st rategy connectionOption. If you’re interested in what the SDK
does under the covers, read the detailed transaction flow.

That’s it! In this topic you’ve understood how to call a smart contract from a sample application by examining how
MagnetoCorp’s application issues a new commercial paper in PaperNet. Now examine the key ledger and smart
contract data structures are designed by in the architecture topic behind them.

6.6 Application design elements

This section elaborates the key features for client application and smart contract development found in Hyperledger
Fabric. A solid understanding of the features will help you design and implement efficient and effective solutions.

6.6. Application design elements 153

../txflow.html
./architecture.html

hyperledger-fabricdocs Documentation, Release master

6.6.1 Contract names

Audience: Architects, application and smart contract developers, administrators

A chaincode is a generic container for deploying code to a Hyperledger Fabric blockchain network. One or more
related smart contracts are defined within a chaincode. Every smart contract has a name that uniquely identifies it
within a chaincode. Applications access a particular smart contract within a chaincode using its contract name.

In this topic, we’re going to cover:
* How a chaincode contains multiple smart contracts
* How to assign a smart contract name
* How to use a smart contract from an application

o The default smart contract

Chaincode

In the Developing Applications topic, we can see how the Fabric SDKs provide high level programming abstractions
which help application and smart contract developers to focus on their business problem, rather than the low level
details of how to interact with a Fabric network.

Smart contracts are one example of a high level programming abstraction, and it is possible to define smart contracts
within in a chaincode container. When a chaincode is installed on your peer and deployed to a channel, all the smart
contracts within it are made available to your applications.

chaincode | chaincode |
container A smart contract 1 container B smart contract 1
smart contract 2 smart contract 2
smart contract 3 smart contract 3
smart contract 4

Multiple smart contracts can be defined within a chaincode. Each is uniquely identified by their name within a
chaincode.

In the diagram above, chaincode A has three smart contracts defined within it, whereas chaincode B has four smart
contracts. See how the chaincode name is used to fully qualify a particular smart contract.

The ledger structure is defined by a set of deployed smart contracts. That’s because the ledger contains facts about the
business objects of interest to the network (such as commercial paper within PaperNet), and these business objects are
moved through their lifecycle (e.g. issue, buy, redeem) by the transaction functions defined within a smart contract.

In most cases, a chaincode will only have one smart contract defined within it. However, it can make sense to keep
related smart contracts together in a single chaincode. For example, commercial papers denominated in different cur-
rencies might have contracts EuroPaperContract, DollarPaperContract, YenPaperContract which
might need to be kept synchronized with each other in the channel to which they are deployed.

154 Chapter 6. Developing Applications

./developing_applications.html

hyperledger-fabricdocs Documentation, Release master

Name

Each smart contract within a chaincode is uniquely identified by its contract name. A smart contract can explicitly
assign this name when the class is constructed, or let the Cont ract class implicitly assign a default name.

Examine the papercontract. js chaincode file:

class CommercialPaperContract extends Contract {

constructor () {
// Unique name when multiple contracts per chaincode file
super ('org.papernet.commercialpaper');

See how the CommercialPaperContract constructor specifies the contract name as org.papernet.
commercialpaper. The result is that within the papercontract chaincode, this smart contract is now as-
sociated with the contract name org.papernet .commercialpaper.

If an explicit contract name is not specified, then a default name is assigned — the name of the class. In our example,
the default contract name would be CommercialPaperContract.

Choose your names carefully. It’s not just that each smart contract must have a unique name; a well-chosen name
is illuminating. Specifically, using an explicit DNS-style naming convention is recommended to help organize clear
and meaningful names; org.papernet .commercialpaper conveys that the PaperNet network has defined a
standard commercial paper smart contract.

Contract names are also helpful to disambiguate different smart contract transaction functions with the same name in
a given chaincode. This happens when smart contracts are closely related; their transaction names will tend to be the
same. We can see that a transaction is uniquely defined within a channel by the combination of its chaincode and smart
contract name.

Contract names must be unique within a chaincode file. Some code editors will detect multiple definitions of the same
class name before deployment. Regardless the chaincode will return an error if multiple classes with the same contract
name are explicitly or implicitly specified.

Application

Once a chaincode has been installed on a peer and deployed to a channel, the smart contracts in it are accessible to an
application:

const network = await gateway.getNetwork (papernet);

const contract = await network.getContract ('papercontract', 'org.papernet.
—commercialpaper');

const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001
—', '2020-05-31', '2020-11-30', '5000000");

See how the application accesses the smart contract with the network.getContract () method. The
papercontract chaincode name org.papernet .commercialpaper returns a cont ract reference which
can be used to submit transactions to issue commercial paper with the contract . submitTransaction () APL

Default contract

The first smart contract defined in a chaincode is called the default smart contract. A default is helpful because a
chaincode will usually have one smart contract defined within it; a default allows the application to access those
transactions directly — without specifying a contract name.

6.6. Application design elements 155

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/papercontract.js#L31

hyperledger-fabricdocs Documentation, Release master

papercontract
chaincode CommercialPaperContract:

issue:
buy:

BondContract:

issue:
cancel:

A default smart contract is the first contract defined in a chaincode.

In this diagram, CommercialPaperContract is the default smart contract. Even though we have two smart
contracts, the default smart contract makes our previous example easier to write:

const network = await gateway.getNetwork (papernet);
const contract = await network.getContract ('papercontract');

const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001
', '2020-05-31', '2020-11-30', '5000000");

This works because the default smart contract in papercontract is CommercialPaperContract and it has
an issue transaction. Note that the issue transaction in BondContract can only be invoked by explicitly
addressing it. Likewise, even though the cancel transaction is unique, because BondContract is not the default
smart contract, it must also be explicitly addressed.

In most cases, a chaincode will only contain a single smart contract, so careful naming of the chaincode can reduce the
need for developers to care about chaincode as a concept. In the example code above it feels like papercontract
is a smart contract.

In summary, contract names are a straightforward mechanism to identify individual smart contracts within a given
chaincode. Contract names make it easy for applications to find a particular smart contract and use it to access the
ledger.

6.6.2 Chaincode namespace

Audience: Architects, application and smart contract developers, administrators

A chaincode namespace allows it to keep its world state separate from other chaincodes. Specifically, smart contracts
in the same chaincode share direct access to the same world state, whereas smart contracts in different chaincodes
cannot directly access each other’s world state. If a smart contract needs to access another chaincode world state, it
can do this by performing a chaincode-to-chaincode invocation. Finally, a blockchain can contain transactions which
relate to different world states.

In this topic, we’re going to cover:
» The importance of namespaces
* What is a chaincode namespace
* Channels and namespaces

e How to use chaincode namespaces

156 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

e How to access world states across smart contracts

* Design considerations for chaincode namespaces

Motivation

A namespace is a common concept. We understand that Park Street, New York and Park Street, Seattle are different
streets even though they have the same name. The city forms a namespace for Park Street, simultaneously providing
freedom and clarity.

It’s the same in a computer system. Namespaces allow different users to program and operate different parts of a
shared system, without getting in each other’s way. Many programming languages have namespaces so that programs
can freely assign unique identifiers, such as variable names, without worrying about other programs doing the same.
We’ll see that Hyperledger Fabric uses namespaces to help smart contracts keep their ledger world state separate from
other smart contracts.

Scenario

Let’s examine how the ledger world state organizes facts about business objects that are important to the organizations
in a channel using the diagram below. Whether these objects are commercial papers, bonds, or vehicle registrations,
and wherever they are in their lifecycle, they are maintained as states within the ledger world state database. A smart
contract manages these business objects by interacting with the ledger (world state and blockchain), and in most cases
this will involve it querying or updating the ledger world state.

It’s vitally important to understand that the ledger world state is partitioned according to the chaincode of the smart
contract that accesses it, and this partitioning, or namespacing is an important design consideration for architects,
administrators and programmers.

Peer node blockchain

CORE code

i
i
i
!
i
application !
i
i
i
i
i

euroPaper = network.getContract (papers, euroPaper);
paperl = euroPaper.submit (issue, PAP11);

Chaincode containers

paper2 = yenPaper.submit (redeem, PAP21); | { TTTTTmmmmmmmmm o e m T '

!
euroPaper: ||yenPaper:

paperListEuro paperListYen

i
i
yenPaper = network.getContract (papers, yenPaper); papers chaincode i
i
i
i
1

i
1
euroBond = network.getContract (bonds, euroBond); : R A
Bondl = euroBond.submit (buy, BON31); ! lssue: 1ssue: world
I
1
1
1
'

o o {PAP11...}||{PAP21...}
uy uyi state A (PaP12...}[[(pARP22.. .}
yenBond = network.getContract (bonds, yenBond); redeem: redeem: T : (PAP13 } (PAP23)

Bond2 = yenBond.submit (sell, BON41);

6 6 06

i
i
i
i bonds database
i
i
i
i

euroBond: yenBond: bondListEuro bondListYen
buy: buy: world (BON31...}||(BoN41...}
sell: sell: state B (BON32...}||(BON4Z2.. .}

i T [{BON33...}||(BON43...}

The ledger world state is separated into different namespaces according to the chaincode that accesses it. Within
a given channel, smart contracts in the same chaincode share the same world state, and smart contracts in different
chaincodes cannot directly access each other’s world state. Likewise, a blockchain can contain transactions that relate
to different chaincode world states.

In our example, we can see four smart contracts defined in two different chaincodes, each of which is in their own
chaincode container. The euroPaper and yenPaper smart contracts are defined in the papers chaincode. The
situation is similar for the euroBond and yenBond smart contracts — they are defined in the bonds chaincode. This
design helps application programmers understand whether they are working with commercial papers or bonds priced

6.6. Application design elements 157

hyperledger-fabricdocs Documentation, Release master

in Euros or Yen, and because the rules for each financial product don’t really change for different currencies, it makes
sense to manage their deployment in the same chaincode.

The diagram also shows the consequences of this deployment choice. The database management system (DBMS)
creates different world state databases for the papers and bonds chaincodes and the smart contracts contained
within them. World state A and world state B are each held within distinct databases; the data are isolated
from each other such that a single world state query (for example) cannot access both world states. The world state is
said to be namespaced according to its chaincode.

See how world state A contains two lists of commercial papers paperListEuro and paperListYen. The
states PAP11 and PAP21 are instances of each paper managed by the euroPaper and yenPaper smart contracts
respectively. Because they share the same chaincode namespace, their keys (PAPxyz) must be unique within the
namespace of the papers chaincode, a little like a street name is unique within a town. Notice how it would be
possible to write a smart contract in the papers chaincode that performed an aggregate calculation over all the
commercial papers — whether priced in Euros or Yen — because they share the same namespace. The situation is
similar for bonds — they are held within world state B which maps to a separate bonds database, and their keys
must be unique.

Just as importantly, namespaces mean that euroPaper and yenPaper cannot directly access world state B,
and that euroBond and yenBond cannot directly access world state A. Thisisolation is helpful, as commercial
papers and bonds are very distinct financial instruments; they have different attributes and are subject to different rules.
It also means that papers and bonds could have the same keys, because they are in different namespaces. This is
helpful; it provides a significant degree of freedom for naming. Use this freedom to name different business objects
meaningfully.

Most importantly, we can see that a blockchain is associated with the peer operating in a particular channel, and that
it contains transactions that affect both world state A and world state B. That’s because the blockchain is
the most fundamental data structure contained in a peer. The set of world states can always be recreated from this
blockchain, because they are the cumulative results of the blockchain’s transactions. A world state helps simplify
smart contracts and improve their efficiency, as they usually only require the current value of a state. Keeping world
states separate via namespaces helps smart contracts isolate their logic from other smart contracts, rather than having
to worry about transactions that correspond to different world states. For example, a bonds contract does not need to
worry about paper transactions, because it cannot see their resultant world state.

It’s also worth noticing that the peer, chaincode containers and DBMS all are logically different processes. The peer
and all its chaincode containers are always in physically separate operating system processes, but the DBMS can be
configured to be embedded or separate, depending on its type. For LevelDB, the DBMS is wholly contained within
the peer, but for CouchDB, it is a separate operating system process.

It’s important to remember that namespace choices in this example are the result of a business requirement to share
commercial papers in different currencies but isolate them separate from bonds. Think about how the namespace
structure would be modified to meet a business requirement to keep every financial asset class separate, or share all
commercial papers and bonds?

Channels

If a peer is joined to multiple channels, then a new blockchain is created and managed for each channel. Moreover,
every time a chaincode is deployed to a new channel, a new world state database is created for it. It means that the
channel also forms a kind of namespace alongside that of the chaincode for the world state.

However, the same peer and chaincode container processes can be simultaneously joined to multiple channels — unlike
blockchains, and world state databases, these processes do not increase with the number of channels joined.

For example, if you deployed the papers and bonds chaincode to a new channel, there would a totally separate
blockchain created, and two new world state databases created. However, the peer and chaincode containers would
not increase; each would just be connected to multiple channels.

158 Chapter 6. Developing Applications

../ledger/ledger.html#world-state-database-options

hyperledger-fabricdocs Documentation, Release master

Usage

Let’s use our commercial paper example to show how an application uses a smart contract with namespaces. It’s worth
noting that an application communicates with the peer, and the peer routes the request to the appropriate chaincode
container which then accesses the DBMS. This routing is done by the peer core component shown in the diagram.

Here’s the code for an application that uses both commercial papers and bonds, priced in Euros and Yen. The code is
fairly self-explanatory:

const euroPaper = network.getContract (papers, euroPaper);
paperl = euroPaper.submit (issue, PAP11);

const yenPaper = network.getContract (papers, yenPaper);
paper2 = yenPaper.submit (redeem, PAP21);

const euroBond = network.getContract (bonds, euroBond);
bondl = euroBond.submit (buy, BON31);

const yenBond = network.getContract (bonds, yenBond);
bond2 = yenBond.submit (sell, BON41);

See how the application:

* Accesses the euroPaper and yenPaper contracts using the getContract () API specifying the papers
chaincode. See interaction points 1a and 2a.

* Accesses the euroBond and yenBond contracts using the getContract () API specifying the bonds
chaincode. See interaction points 3a and 4a.

e Submits an issue transaction to the network for commercial paper PAP11 using the euroPaper contract.
See interaction point 1a. This results in the creation of a commercial paper represented by state PAP11 in
world state A;interaction point 1b. This operation is captured as a transaction in the blockchain at inter-
action point 1c.

¢ Submits a redeem transaction to the network for commercial paper PAP21 using the yenPaper contract. See
interaction point 2a. This results in the creation of a commercial paper represented by state PAP21 in world
state A;interaction point 2b. This operation is captured as a transaction in the blockchain at interaction point
2c.

* Submits a buy transaction to the network for bond BON31 using the euroBond contract. See interaction point
3a. This results in the creation of a bond represented by state BON31 in world state B; interaction point
3b. This operation is captured as a transaction in the blockchain at interaction point 3c.

» Submits a sel1 transaction to the network for bond BON41 using the yenBond contract. See interaction point
4a. This results in the creation of a bond represented by state BON41 in world state B; interaction point
4b. This operation is captured as a transaction in the blockchain at interaction point 4c.

See how smart contracts interact with the world state:

e euroPaper and yenPaper contracts can directly access world state A, but cannot directly access
world state B. World state A is physically held in the papers database in the database manage-
ment system (DBMS) corresponding to the papers chaincode.

* euroBond and yenBond contracts can directly access world state B, butcannot directly access world
state A.World state B is physically held in the bonds database in the database management system
(DBMS) corresponding to the bonds chaincode.

See how the blockchain captures transactions for all world states:

¢ Interactions 1c¢ and 2¢ correspond to transactions create and update commercial papers PAP11 and PAP21
respectively. These are both contained within world state A.

6.6. Application design elements 159

hyperledger-fabricdocs Documentation, Release master

¢ Interactions 3¢ and 4c¢ correspond to transactions both update bonds BON31 and BON41. These are both con-
tained within world state B.

* Ifworld state Aorworld state B weredestroyed for any reason, they could be recreated by replaying
all the transactions in the blockchain.

Cross chaincode access

As we saw in our example scenario, euroPaper and yenPaper cannot directly access world state B. That’s
because we have designed our chaincodes and smart contracts so that these chaincodes and world states are kept
separately from each other. However, let’s imagine that euroPaper needs to access world state B.

Why might this happen? Imagine that when a commercial paper was issued, the smart contract wanted to price the
paper according to the current return on bonds with a similar maturity date. In this case it will be necessary for the
euroPaper contract to be able to query the price of bonds in world state B. Look at the following diagram to
see how we might structure this interaction.

papers
endorsement
policy

application papers chaincode

papers database

euroPaper = network.getContract (papers, euroPaper); euroPaper: yenPaper:
paperl = euroPaper.submit (issue, PAP11); issue: issue:

paperlListEuro paperlListYen
(PAP11...}||{PAP21...}
{PAP12...} {PAP22...}
{(PAP12...}||{PAP22...}

yenPaper = network.getContract(papers, yenPaper);
paper2 = yenPaper.submit (issue, PAP21);

0 6

E—

bondListEuro bondListYen
{BON31...} {BON41l...}
(BON32...}||(BoN42. ..}
{BON32...} {BON42...}

euroBond: yenBond:
+ query: t-» query:

bonds database

bonds
endorsement
policy

bonds chaincode DBMS

How chaincodes and smart contracts can indirectly access another world state — via its chaincode.
Notice how:

* the application submits an i ssue transaction in the euroPaper smart contract to issue PAP11. See interac-
tion la.

¢ the issue transaction in the euroPaper smart contract calls the query transaction in the euroBond smart
contract. See interaction point 1b.

¢ the queryin euroBond can retrieve information from world state B. See interaction point 1c.

* when control returns to the issue transaction, it can use the information in the response to price the paper and
update world state A with information. See interaction point 1d.

* the flow of control for issuing commercial paper priced in Yen is the same. See interaction points 2a, 2b, 2¢ and
2d.

Control is passed between chaincode using the invokeChaincode () APL
This API passes control from one chaincode to another chaincode.

Although we have only discussed query transactions in the example, it is possible to invoke a smart contract which
will update the called chaincode’s world state. See the considerations below.

160 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#invokeChaincode__anchor

hyperledger-fabricdocs Documentation, Release master

Considerations

* In general, each chaincode will have a single smart contract in it.

¢ Multiple smart contracts should only be deployed in the same chaincode if they are very closely related. Usually,
this is only necessary if they share the same world state.

* Chaincode namespaces provide isolation between different world states. In general it makes sense to isolate
unrelated data from each other. Note that you cannot choose the chaincode namespace; it is assigned by Hyper-
ledger Fabric, and maps directly to the name of the chaincode.

¢ For chaincode to chaincode interactions using the invokeChaincode () API, both chaincodes must be in-
stalled on the same peer.

— For interactions that only require the called chaincode’s world state to be queried, the invocation can be in
a different channel to the caller’s chaincode.

— For interactions that require the called chaincode’s world state to be updated, the invocation must be in the
same channel as the caller’s chaincode.

6.6.3 Transaction context

Audience: Architects, application and smart contract developers

A transaction context performs two functions. Firstly, it allows a developer to define and maintain user variables
across transaction invocations within a smart contract. Secondly, it provides access to a wide range of Fabric APIs
that allow smart contract developers to perform operations relating to detailed transaction processing. These range
from querying or updating the ledger, both the immutable blockchain and the modifiable world state, to retrieving the
transaction-submitting application’s digital identity.

A transaction context is created when a smart contract is deployed to a channel and made available to every subse-
quent transaction invocation. A transaction context helps smart contract developers write programs that are powerful,
efficient and easy to reason about.

* Why a transaction context is important
* How to use a transaction context

e What’s in a transaction context

* Using a context stub

» Using a context clientIdentity

Scenario

In the commercial paper sample, papercontract initially defines the name of the list of commercial papers for which
it’s responsible. Each transaction subsequently refers to this list; the issue transaction adds new papers to it, the buy
transaction changes its owner, and the redeem transaction marks it as complete. This is a common pattern; when
writing a smart contract it’s often helpful to initialize and recall particular variables in sequential transactions.

6.6. Application design elements 161

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/papercontract.js

hyperledger-fabricdocs Documentation, Release master

CommercialPaperContext extends Context {
constructor () {
this.paperList = new PaperList(this);

}
CommercialPaperContract extends Contract ({
createContext () {

i O -
v

new CommercialPaperContext ();

E ctx E— ——————— o—————>O issue(ctx, issuer, paperNumber, ...) {
[o ctx.paperlList.addPaper(...);

' ctx.stub.putState(...);

! }
.""L"j
:__(fEf(_":' ------- o-"--*o buy(ctx, issuer, paperNumber, ...) {}
RPN, A
1ctx E— ——————— o-————vO redeem (ctx, issuer, paperNumber, ...) {}

}

A smart contract transaction context allows smart contracts to define and maintain user variables across transaction
invocations. Refer to the text for a detailed explanation.

Programming

When a smart contract is constructed, a developer can optionally override the built-in Context class
createContext method to create a custom context:

createContext () {
new CommercialPaperContext ();

In our example, the CommercialPaperContext is specialized for CommercialPaperContract. See how
the custom context, addressed through this, adds the specific variable PaperList to itself:

CommercialPaperContext extends Context ({
constructor () {
this.paperlList = new PaperList (this);

When the createContext() method returns at point (1) in the diagram above, a custom context ct x has been created
which contains paperList as one of its variables.

Subsequently, whenever a smart contract transaction such as issue, buy or redeem is called, this context will be passed
to it. See how at points (2), (3) and (4) the same commercial paper context is passed into the transaction method using
the ctx variable.

See how the context is then used at point (5):

ctx.paperlList.addPaper(...);
ctx.stub.putState(...);

Notice how paperList created in CommercialPaperContext is available to the issue transaction. See how
paperList is similarly used by the redeem and buy transactions; ct x makes the smart contracts efficient and easy
to reason about.

162 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

You can also see that there’s another element in the context — ctx.stub — which was not explicitly added by
CommercialPaperContext. That’s because stub and other variables are part of the built-in context. Let’s
now examine the structure of this built-in context, these implicit variables and how to use them.

Structure

As we’ve seen from the example, a transaction context can contain any number of user variables such as paperList.

The transaction context also contains two built-in elements that provide access to a wide range of Fabric functionality
ranging from the client application that submitted the transaction to ledger access.

e ctx.stub is used to access APIs that provide a broad range of transaction processing operations from
putState () and getState () to access the ledger, to get TxID () to retrieve the current transaction ID.

e ctx.clientIdentity is used to get information about the identity of the user who submitted the transac-
tion.

We’ll use the following diagram to show you what a smart contract can do using the stub and clientIdentity
using the APIs available to it:

transaction .~
L) e 1
“w " transient data

st @ channel: papernet

application * pap

Isabella)i

Peer3 W@

MagnetoCorp
o Wallet Smart

T
1

1

1

1

1

1

1

1

'

° contract '

X.509 '

CAl certificate 1
MagnetoCorp e H
1

1

1

1

1

A smart contract can access a range of functionality in a smart contract via the transaction context stub and
clientIdentity. Refer to the text for a detailed explanation.

= Peer2

MagnetoCorp

Ordererl

MagnetoCorp

Orderer2

DigiBank

1
1
® . | .
MagnetoCorp notification | DigiBank
1
= l10) . |
- timestamp @ [l :
- CH e :
- response (states & events) Smart I
- {response signatures} MSP —contract '
'
'
'
'
1
1
1
1

)

Peerl

MagnetoCorp

Peerd

DigiBank

Smart
contract

Smart
contract

Private data
collection

World state

Stub

The APIs in the stub fall into the following categories:

¢ World state data APIs. See interaction point (1). These APIs enable smart contracts to get, put and delete state
corresponding to individual objects from the world state, using their key:

— getState()
— putState()
— deleteState()

These basic APIs are complemented by query APIs which enable contracts to retrieve a set of states, rather than
an individual state. See interaction point (2). The set is either defined by a range of key values, using full or

6.6. Application design elements 163

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getState__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#putState__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#deleteState__anchor

hyperledger-fabricdocs Documentation, Release master

partial keys, or a query according to values in the underlying world state database. For large queries, the result
sets can be paginated to reduce storage requirements:

— getStateByRange()

- getStateByRangeWithPagination()

— getStateByPartialCompositeKey()

— getStateByPartialCompositeKeyWithPagination()
— getQueryResult()

— getQueryResultWithPagination()

* Private data APIs. See interaction point (3). These APIs enable smart contracts to interact with a private data

collection. They are analogous to the APIs for world state interactions, but for private data. There are APIs to
get, put and delete a private data state by its key:

— getPrivateData()
— putPrivateData()
— deletePrivateData()

This set is complemented by set of APIs to query private data (4). These APIs allow smart contracts to retrieve
a set of states from a private data collection, according to a range of key values, either full or partial keys, or
a query according to values in the underlying world state database. There are currently no pagination APIs for
private data collections.

— getPrivateDataByRange()
— getPrivateDataByPartial CompositeKey()
— getPrivateDataQueryResult()

Transaction APIs. See interaction point (5). These APIs are used by a smart contract to retrieve details about
the current transaction proposal being processed by the smart contract. This includes the transaction identifier
and the time when the transaction proposal was created.

— getTxID() returns the identifier of the current transaction proposal (5).

— getTxTimestamp() returns the timestamp when the current transaction proposal was created by the appli-
cation (5).

— getCreator() returns the raw identity (X.509 or otherwise) of the creator of transaction proposal. If this is
an X.509 certificate then it is often more appropriate touse ctx.ClientIdentity.

— getSignedProposal() returns a signed copy of the current transaction proposal being processed by the smart
contract.

— getBinding() is used to prevent transactions being maliciously or accidentally replayed using a nonce. (For
practical purposes, a nonce is a random number generated by the client application and incorporated in a
cryptographic hash.) For example, this API could be used by a smart contract at (1) to detect a replay of
the transaction (5).

— getTransient() allows a smart contract to access the transient data an application passes to a smart contract.
See interaction points (9) and (10). Transient data is private to the application-smart contract interaction.
It is not recorded on the ledger and is often used in conjunction with private data collections (3).

» Key APIs are used by smart contracts to manipulate state key in the world state or a private data collection. See

interaction points 2 and 4.

The simplest of these APIs allows smart contracts to form and split composite keys from their individual com-
ponents. Slightly more advanced are the ValidationParameter () APIs which get and set the state based

164

Chapter 6. Developing Applications

../ledger/ledger.html#world-state-database-options
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByRange__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByRangeWithPagination__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByPartialCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateByPartialCompositeKeyWithPagination__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getQueryResult__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getQueryResultWithPagination__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateData__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#putPrivateData__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#deletePrivateData__anchor
../ledger/ledger.html#world-state-database-options
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataByRange__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataByPartialCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataQueryResult__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getTxID__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getTxTimestamp__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getCreator__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getSignedProposal__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getBinding__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getTransient__anchor

hyperledger-fabricdocs Documentation, Release master

endorsement policies for world state (2) and private data (4). Finally, getHistoryForKey () retrieves the
history for a state by returning the set of stored values, including the transaction identifiers that performed the
state update, allowing the transactions to be read from the blockchain (10).

createCompositeKey()
— splitCompositeKey()
— setState ValidationParameter()
— getStateValidationParameter()
— getPrivateDataValidationParameter()
— setPrivateDataValidationParameter()
— getHistoryForKey()
* Event APIs are used to set an event during the processing of a smart contract.
— setEvent()

Smart contracts use this API to add an event to a transaction response. Note that only a single event can
be created in a transaction, and must originate from the outer-most contract when contracts invoke each
other via invokeChaincode. See interaction point (5). These events are ultimately recorded on the
blockchain and sent to listening applications at interaction point (11).

 Utility APIs are a collection of useful APIs that don’t easily fit in a pre-defined category, so we’ve grouped
them together! They include retrieving the current channel name and passing control to a different chaincode
on the same peer.

— getChannellD()

See interaction point (13). A smart contract running on any peer can use this API to determined on which
channel the application invoked the smart contract.

— invokeChaincode()

See interaction point (14). Peer3 owned by MagnetoCorp has multiple smart contracts installed on it.
These smart contracts are able to call each other using this API. The smart contracts must be collocated; it
is not possible to call a smart contract on a different peer.

Some of these utility APIs are only used if you’re using low-level chaincode, rather than smart contracts. These
APIs are primarily for the detailed manipulation of chaincode input; the smart contract Cont ract class does
all of this parameter marshalling automatically for developers.

— getFunctionAndParameters()
— getStringArgs()
— getArgs()

Clientldentity

In most cases, the application submitting a transaction will be using an X.509 certificate. In the example, an X.509
certificate (6) issued by CA1 (7) is being used by Isabella (8) in her application to sign the proposal in transaction
t6 (5).

ClientIdentity takes the information returned by getCreator () and puts a set of X.509 utility APIs on top
of it to make it easier to use for this common use case.

o getX509Certificate() returns the full X.509 certificate of the transaction submitter, including all its attributes and
their values. See interaction point (6).

6.6. Application design elements 165

https://hyperledger.github.io/fabric-chaincode-node/\protect \T1\textbraceleft BRACNH\protect \T1\textbraceright /api/fabric-shim.ChaincodeStub.html#createCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#splitCompositeKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#setStateValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStateValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getPrivateDataValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#setPrivateDataValidationParameter__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getHistoryForKey__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#setEvent__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getChannelID__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#invokeChaincode__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getFunctionAndParameters__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getStringArgs__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ChaincodeStub.html#getArgs__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getX509Certificate__anchor

hyperledger-fabricdocs Documentation, Release master

* getAttributeValue() returns the value of a particular X.509 attribute, for example, the organizational unit OU, or
distinguished name DN. See interaction point (6).

* assertAttributeValue() returns TRUE if the specified attribute of the X.509 attribute has a specified value. See
interaction point (6).

¢ getID() returns the unique identity of the transaction submitter, according to their distinguished name and the
issuing CA’s distinguished name. The format is x509: : { subject DN} ::{issuer DN}. See interaction
point (6).

e getMSPID() returns the channel MSP of the transaction submitter. This allows a smart contract to make pro-
cessing decisions based on the submitter’s organizational identity. See interaction point (15) or (16).

6.6.4 Transaction handlers

Audience: Architects, Application and smart contract developers

Transaction handlers allow smart contract developers to define common processing at key points during the interaction
between an application and a smart contract. Transaction handlers are optional but, if defined, they will receive control
before or after every transaction in a smart contract is invoked. There is also a specific handler which receives control
when a request is made to invoke a transaction not defined in a smart contract.

Here’s an example of transaction handlers for the commercial paper smart contract sample:

CommercialPaperContract extends Contract {

—>| beforeTransaction (ctx) issue (ctx, issuer, paperNumber, ...) {

return result;

<—| afterTransaction(ctx, result) |<7 }

buy (ctx, issuer, paperNumber, ...) {

redeem (ctx, issuer, paperNumber, ...) {

}

<—| unknownTransaction (ctx) |<|—}

Before, After and Unknown transaction handlers. In this example, beforeTransaction () is called before the
issue, buy and redeem transactions. afterTransaction () is called after the issue, buy and redeem transactions.
unknownTransaction () is only called if a request is made to invoke a transaction not defined in the smart
contract. (The diagram is simplified by not repeating beforeTransactionand afterTransaction boxes for
each transaction.)

Types of handler

There are three types of transaction handlers which cover different aspects of the interaction between an application
and a smart contract:

166 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getAttributeValue__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#assertAttributeValue__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getID__anchor
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-shim.ClientIdentity.html#getMSPID__anchor
./smartcontract.html

hyperledger-fabricdocs Documentation, Release master

* Before handler: is called before every smart contract transaction is invoked. The handler will usually modify
the transaction context to be used by the transaction. The handler has access to the full range of Fabric APIs;
for example, it can issue get State () and putState ().

o After handler: is called after every smart contract transaction is invoked. The handler will usually perform
post-processing common to all transactions, and also has full access to the Fabric APIs.

* Unknown handler: is called if an attempt is made to invoke a transaction that is not defined in a smart contract.
Typically, the handler will record the failure for subsequent processing by an administrator. The handler has full
access to the Fabric APIs.

Defining a transaction handler is optional; a smart contract will perform correctly without handlers being defined. A
smart contract can define at most one handler of each type.

Defining a handler

Transaction handlers are added to the smart contract as methods with well defined names. Here’s an example which
adds a handler of each type:

CommercialPaperContract extends Contract ({

async beforeTransaction (ctx) {
// Write the transaction ID as an informational to the console
console.info(ctx.stub.getTxID());

}i

async afterTransaction(ctx, result) {
// This handler interacts with the ledger
ctx.stub.cplList.putState(...);

}i

async unknownTransaction (ctx) {
// This handler throws an exception
throw new Error ('Unknown transaction function');

}i

The form of a transaction handler definition is the similar for all handler types, but notice how the
afterTransaction(ctx, result) alsoreceives any result returned by the transaction. The API documenta-
tion shows you the exact form of these handlers.

Handler processing

Once a handler has been added to the smart contract, it will be invoked during transaction processing. During process-
ing, the handler receives ctx, the transaction context, performs some processing, and returns control as it completes.
Processing continues as follows:

* Before handler: If the handler completes successfully, the transaction is called with the updated context. If the
handler throws an exception, then the transaction is not called and the smart contract fails with the exception
error message.

o After handler: If the handler completes successfully, then the smart contract completes as determined by the
invoked transaction. If the handler throws an exception, then the transaction fails with the exception error
message.

6.6. Application design elements 167

https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-contract-api.Contract.html
https://hyperledger.github.io/fabric-chaincode-node/master/api/fabric-contract-api.Contract.html
./transationcontext.md

hyperledger-fabricdocs Documentation, Release master

e Unknown handler: The handler should complete by throwing an exception with the required error message. If
an Unknown handler is not specified, or an exception is not thrown by it, there is sensible default processing;
the smart contract will fail with an unknown transaction error message.

If the handler requires access to the function and parameters, then it is easy to do this:

async beforeTransaction (ctx) {
// Retrieve details of the transaction

let txnDetails = ctx.stub.getFunctionAndParameters();
console.info(Calling function: txnDetails.fcn/));
console.info (util.format (' Function arguments : %j stub.getArgs ()) ;

See how this handler uses the utility API getFunctionAndParameters via the transaction context.

Multiple handlers

It is only possible to define at most one handler of each type for a smart contract. If a smart contract needs to invoke
multiple functions during before, after or unknown handling, it should coordinate this from within the appropriate
function.

6.6.5 Endorsement policies

Audience: Architects, Application and smart contract developers

Endorsement policies define the smallest set of organizations that are required to endorse a transaction in order for it
to be valid. To endorse, an organization’s endorsing peer needs to run the smart contract associated with the transac-
tion and sign its outcome. When the ordering service sends the transaction to the committing peers, they will each
individually check whether the endorsements in the transaction fulfill the endorsement policy. If this is not the case,
the transaction is invalidated and it will have no effect on world state.

Endorsement policies work at two different granularities: they can be set for an entire namespace, as well as for
individual state keys. They are formulated using basic logic expressions such as AND and OR. For example, in Pa-
perNet this could be used as follows: the endorsement policy for a paper that has been sold from MagnetoCorp to
DigiBank could be set to AND (MagnetoCorp.peer, DigiBank.peer), requiring any changes to this paper
to be endorsed by both MagnetoCorp and DigiBank.

6.6.6 Connection Profile

Audience: Architects, application and smart contract developers

A connection profile describes a set of components, including peers, orderers and certificate authorities in a Hyper-
ledger Fabric blockchain network. It also contains channel and organization information relating to these components.
A connection profile is primarily used by an application to configure a gateway that handles all network interactions,
allowing it to focus on business logic. A connection profile is normally created by an administrator who understands
the network topology.

In this topic, we’re going to cover:
* Why connection profiles are important
e How applications use a connection profile

* How to define a connection profile

168 Chapter 6. Developing Applications

./transactioncontext.html#stub
./gateway.html

hyperledger-fabricdocs Documentation, Release master

Scenario

A connection profile is used to configure a gateway. Gateways are important for many reasons, the primary being to
simplify an application’s interaction with a network channel.

paper Connection
contract profile 2

Connection
profile 1

N
T Peer2 Ordererl Orderer2 Peer?7 ;
: MagnetoCorp MagnetoCorp DigiBank DigiBank :
l :
R R R T
! |
ar " !) 2
issue” | Gateway | channel: papernet | Gateway | “buy”
application 1 ! ! 2 application
ceeee l |
Peerl Peer3 Peer9 Peer8
MagnetoCorp MagnetoCorp DigiBank DigiBank
CAl paper paper CA2
MagnetoCorp contract contract DigiBank

Two applications, issue and buy, use gateways 1&2 configured with connection profiles 1&2. Each profile describes a
different subset of MagnetoCorp and DigiBank network components. Each connection profile must contain sufficient
information for a gateway to interact with the network on behalf of the issue and buy applications. See the text for a
detailed explanation.

A connection profile contains a description of a network view, expressed in a technical syntax, which can either be
JSON or YAML. In this topic, we use the YAML representation, as it’s easier for you to read. Static gateways need
more information than dynamic gateways because the latter can use service discovery to dynamically augment the
information in a connection profile.

A connection profile should not be an exhaustive description of a network channel; it just needs to contain enough
information sufficient for a gateway that’s using it. In the network above, connection profile 1 needs to contain at least
the endorsing organizations and peers for the issue transaction, as well as identifying the peers that will notify the
gateway when the transaction has been committed to the ledger.

It’s easiest to think of a connection profile as describing a view of the network. It could be a comprehensive view, but
that’s unrealistic for a few reasons:

* Peers, orderers, certificate authorities, channels, and organizations are added and removed according to demand.
» Components can start and stop, or fail unexpectedly (e.g. power outage).

* A gateway doesn’t need a view of the whole network, only what’s necessary to successfully handle transaction
submission or event notification for example.

* Service Discovery can augment the information in a connection profile. Specifically, dynamic gateways can be
configured with minimal Fabric topology information; the rest can be discovered.

A static connection profile is normally created by an administrator who understands the network topology in detail.
That’s because a static profile can contain quite a lot of information, and an administrator needs to capture this in
the corresponding connection profile. In contrast, dynamic profiles minimize the amount of definition required and
therefore can be a better choice for developers who want to get going quickly, or administrators who want to create
a more responsive gateway. Connection profiles are created in either the YAML or JSON format using an editor of
choice.

6.6. Application design elements 169

./gateway.html
../discovery-overview.html

hyperledger-fabricdocs Documentation, Release master

Usage

We’ll see how to define a connection profile in a moment; let’s first see how it is used by a sample MagnetoCorp
issue application:

const yaml = require('js-yaml');

const { Gateway } = require('fabric-network');

const connectionProfile = yaml.safeload(fs.readFileSync('../gateway/paperNet.yaml',
—'utf8'));

const gateway = new Gateway () ;

await gateway.connect (connectionProfile, connectionOptions);

After loading some required classes, see how the paperNet .yaml gateway file is loaded from the file system,
converted to a JSON object using the yaml.safeLoad () method, and used to configure a gateway using its
connect () method.

By configuring a gateway with this connection profile, the issue application is providing the gateway with the relevant
network topology it should use to process transactions. That’s because the connection profile contains sufficient infor-
mation about the PaperNet channels, organizations, peers, orderers and CAs to ensure transactions can be successfully
processed.

It’s good practice for a connection profile to define more than one peer for any given organization — it prevents a single
point of failure. This practice also applies to dynamic gateways; to provide more than one starting point for service
discovery.

A DigiBank buy application would typically configure its gateway with a similar connection profile, but with some
important differences. Some elements will be the same, such as the channel; some elements will overlap, such as the
endorsing peers. Other elements will be completely different, such as notification peers or certificate authorities for
example.

The connectionOptions passed to a gateway complement the connection profile. They allow an application
to declare how it would like the gateway to use the connection profile. They are interpreted by the SDK to control
interaction patterns with network components, for example to select which identity to connect with, or which peers to
use for event notifications. Read about the list of available connection options and when to use them.

Structure

To help you understand the structure of a connection profile, we’re going to step through an example for the network
shown above. Its connection profile is based on the PaperNet commercial paper sample, and stored in the GitHub
repository. For convenience, we’ve reproduced it below. You will find it helpful to display it in another browser
window as you now read about it:

* Line 9: name: '"papernet.magnetocorp.profile.sample"

This is the name of the connection profile. Try to use DNS style names; they are a very easy way to convey
meaning.

e Line 16: x-type: "hlfvl"

Users can add their own x— properties that are “application-specific” — just like with HTTP headers. They are
provided primarily for future use.

e Line 20: description: "Sample connection profile for documentation topic"

A short description of the connection profile. Try to make this helpful for the reader who might be seeing this
for the first time!

170 Chapter 6. Developing Applications

./connectionoptions.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml

hyperledger-fabricdocs Documentation, Release master

e Line 25: version: "1.0"

The schema version for this connection profile. Currently only version 1.0 is supported, and it is not envisioned
that this schema will change frequently.

e Line 32: channels:

This is the first really important line. channels: identifies that what follows are all the channels that this
connection profile describes. However, it is good practice to keep different channels in different connection
profiles, especially if they are used independently of each other.

e Line 36: papernet:
Details of papernet, the first channel in this connection profile, will follow.
e Line 41: orderers:

Details of all the orderers for papernet follow. You can see in line 45 that the orderer for this channel
is ordererl.magnetocorp.example.com. This is just a logical name; later in the connection profile
(lines 134 - 147), there will be details of how to connect to this orderer. Notice that orderer2.digibank.
example.com is not in this list; it makes sense that applications use their own organization’s orderers, rather
than those from a different organization.

e Line 49: peers:
Details of all the peers for papernet will follow.

You can see three peers listed from MagnetoCorp: peerl.magnetocorp.example.com, peer?2.
magnetocorp.example.comand peer3.magnetocorp.example.com. It’s not necessary to list all
the peers in MagnetoCorp, as has been done here. You can see only one peer listed from DigiBank: peer9.
digibank.example.com; including this peer starts to imply that the endorsement policy requires Magne-
toCorp and DigiBank to endorse transactions, as we’ll now confirm. It’s good practice to have multiple peers to
avoid single points of failure.

Underneath each peer you can see four non-exclusive roles: endorsingPeer, chaincodeQuery, ledgerQuery
and eventSource. See how peerl and peer2 can perform all roles as they host papercontract. Contrast
to peer3, which can only be used for notifications, or ledger queries that access the blockchain component
of the ledger rather than the world state, and hence do not need to have smart contracts installed. Notice
how peer9 should not be used for anything other than endorsement, because those roles are better served by
MagnetoCorp peers.

Again, see how the peers are described according to their logical names and their roles. Later in the profile,
we’ll see the physical information for these peers.

e Line 97: organizations:

Details of all the organizations will follow, for all channels. Note that these organizations are for all chan-
nels, even though papernet is currently the only one listed. That’s because organizations can be in multiple
channels, and channels can have multiple organizations. Moreover, some application operations relate to orga-
nizations rather than channels. For example, an application can request notification from one or all peers within
its organization, or all organizations within the network — using connection options. For this, there needs to be
an organization to peer mapping, and this section provides it.

e Line 101: MagnetoCorp:

All peers that are considered part of MagnetoCorp are listed: peerl, peer2 and peer3. Likewise for Cer-
tificate Authorities. Again, note the logical name usages, the same as the channels: section; physical infor-
mation will follow later in the profile.

e Line 121: DigiBank:

Only peer9 is listed as part of DigiBank, and no Certificate Authorities. That’s because these other peers and
the DigiBank CA are not relevant for users of this connection profile.

6.6. Application design elements 171

./connectionoptions.html

hyperledger-fabricdocs Documentation, Release master

e Line 134: orderers:

The physical information for orderers is now listed. As this connection profile only mentioned one orderer
for papernet, you see ordererl.magnetocorp.example.comn details listed. These include its IP
address and port, and gRPC options that can override the defaults used when communicating with the orderer,
if necessary. As with peers :, for high availability, specifying more than one orderer is a good idea.

e Line 152: peers:

The physical information for all previous peers is now listed. This connection profile has three peers for Mag-
netoCorp: peerl, peer?2, and peer3; for DigiBank, a single peer peer9 has its information listed. For
each peer, as with orderers, their IP address and port is listed, together with gRPC options that can override the
defaults used when communicating with a particular peer, if necessary.

e Line 194: certificateAuthorities:

The physical information for certificate authorities is now listed. The connection profile has a single CA listed
for MagnetoCorp, cal-magnetocorp, and its physical information follows. As well as IP details, the reg-
istrar information allows this CA to be used for Certificate Signing Requests (CSR). These are used to request
new certificates for locally generated public/private key pairs.

Now you’ve understood a connection profile for MagnetoCorp, you might like to look at a corresponding profile
for DigiBank. Locate where the profile is the same as MagnetoCorp’s, see where it’s similar, and finally where it’s
different. Think about why these differences make sense for DigiBank applications.

That’s everything you need to know about connection profiles. In summary, a connection profile defines sufficient
channels, organizations, peers, orderers and certificate authorities for an application to configure a gateway. The
gateway allows the application to focus on business logic rather than the details of the network topology.

Sample

This file is reproduced inline from the GitHub commercial paper sample.

[Required]. A connection profile contains information about a set of network
components. It is typically used to configure gateway, allowing applications
interact with a network channel without worrying about the underlying
topology. A connection profile is normally created by an administrator who
understands this topology.

O J oUW N
HH o R R R W H

9: name: "papernet.magnetocorp.profile.sample"

10: #

11: # [Optional]. Analogous to HTTP, properties with an "x-" prefix are deemed

12: # "application-specific", and ignored by the gateway. For example, property
13: # "x-type" with value "hlfvl" was originally used to identify a connection

14: # profile for Fabric 1l.x rather than 0.x.

15: #

l16: x-type: "hlfvl"

17: #

18: # [Required]. A short description of the connection profile

19: #

20: description: "Sample connection profile for documentation topic"
21: #

22: # [Required]. Connection profile schema version. Used by the gateway to
23: # interpret these data.

24: #

25: version: "1.0"

(continues on next page)

172 Chapter 6. Developing Applications

https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

26:
27
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42
43:
44
45:
46:
472
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72
73:
74
75:
76:
77
78:
79:
80:
81:
82:

#
[Optional]. A logical description of each network channel; its peer and
orderer names and their roles within the channel. The physical details of
these components (e.g. peer IP addresses) will be specified later in the
profile; we focus first on the logical, and then the physical.
#
channels:

#

[Optional]. papernet is the only channel in this connection profile

#

papernet:

#

[Optional]. Channel orderers for PaperNet. Details of how to connect to

them is specified later, under the physical "orderers:" section

#

orderers:

#

[Required]. Orderer logical name

#

— ordererl.magnetocorp.example.com

#

[Optional]. Peers and their roles

#

peers:

#

[Required]. Peer logical name

#

peerl.magnetocorp.example.com:

#
[Optional]. Is this an endorsing peer? (It must have chaincode
installed.) Default: true
#
endorsingPeer: true
#
[Optional]. Is this peer used for query? (It must have chaincode
installed.) Default: true
#
chaincodeQuery: true
#
[Optional]. Is this peer used for non-chaincode queries? All peers
support these types of queries, which include queryBlock(),
queryTransaction(), etc. Default: true
#
ledgerQuery: true
#

[Optional]. Is this peer used as an event hub? All peers can produce

events. Default: true
#
eventSource: true
#
peer2.magnetocorp.example.com:
endorsingPeer: true
chaincodeQuery: true
ledgerQuery: true
eventSource: true
#
peer3.magnetocorp.example.com:

(continues on next page)

6.6. Application design elements

173

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

83: endorsingPeer: false
84 chaincodeQuery: false
85: ledgerQuery: true
86: eventSource: true
87: #
88: peer9.digibank.example.com:
89: endorsingPeer: true
90: chaincodeQuery: false
91: ledgerQuery: false
92: eventSource: false
93: #
94: # [Required]. List of organizations for all channels. At least one organization
95: # is required.
96: #
97: organizations:
98: #
99: # [Required]. Organizational information for MagnetoCorp
100: #
101: MagnetoCorp:
102: #
103: # [Required]. The MSPID used to identify MagnetoCorp
104: #
105: mspid: MagnetoCorpMSP
106: #
107: # [Required]. The MagnetoCorp peers
108: #
109: peers:
110: — peerl.magnetocorp.example.com
111: — peer2.magnetocorp.example.com
112: — peer3.magnetocorp.example.com
113: #
114: # [Optional]. Fabric-CA Certificate Authorities.
115: #
116: certificateAuthorities:
117: — ca-magnetocorp
118: #
119: # [Optional]. Organizational information for DigiBank
120: #
121: DigiBank:
122: #
123: # [Required]. The MSPID used to identify DigiBank
124: #
125: mspid: DigiBankMSP
126: #
127: # [Required]. The DigiBank peers
128: #
129: peers:
130: — peer9.digibank.example.com
131: #
132: # [Optional]. Orderer physical information, by orderer name
133: #
134: orderers:
135: #
136: # [Required]. Name of MagnetoCorp orderer
137: #
138: ordererl.magnetocorp.example.com:
139: #
(continues on next page)
174 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:

[Required]. This orderer's IP address
#
url: grpc://localhost:7050
#
[Optional]. gRPC connection properties used for communication
#
grpcOptions:
ssl-target-name-override: ordererl.magnetocorp.example.com

#
[Required]. Peer physical information, by peer name. At least one peer is
required.
#
peers:
#
[Required]. First MagetoCorp peer physical properties
#
peerl.magnetocorp.example.com:
#
[Required]. Peer's IP address
#
url: grpc://localhost:7151
#
[Optional]. gRPC connection properties used for communication
#
grpcOptions:
ssl-target-name-override: peerl.magnetocorp.example.com
request-timeout: 120001
#
[Optional]. Other MagnetoCorp peers

HH o W H H

#
peer2.magnetocorp.example.com:
url: grpc://localhost:7251
grpcOptions:
ssl-target-name-override: peer2.magnetocorp.example.com
request-timeout: 120001
#
peer3.magnetocorp.example.com:
url: grpc://localhost:7351
grpcOptions:
ssl-target-name-override: peer3.magnetocorp.example.com
request-timeout: 120001
#
[Required]. Digibank peer physical properties
#
peer9.digibank.example.com:
url: grpc://localhost:7951
grpcOptions:
ssl-target-name-override: peer9.digibank.example.com
request-timeout: 120001

[Optional]. Fabric-CA Certificate Authority physical information, by name.
This information can be used to (e.g.) enroll new users. Communication is via
REST, hence options relate to HTTP rather than gRPC.

certificateAuthorities:

#
[Required]. MagnetoCorp CA

(continues on next page)

6.6. Application design elements 175

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

197: #

198: cal-magnetocorp:

199: #

200: # [Required]. CA IP address

201: #

202: url: http://localhost:7054

203: #

204: # [Optioanl]. HTTP connection properties used for communication
205: #

206: httpOptions:

207: verify: false

208: #

209: # [Optional]. Fabric-CA supports Certificate Signing Requests (CSRs). A
210: # registrar is needed to enroll new users.
211: #

212: registrar:

213: - enrollId: admin

214: enrollSecret: adminpw

215: #

216: # [Optional]. The name of the CA.

217: #

218: caName: ca-magnetocorp

6.6.7 Connection Options

Audience: Architects, administrators, application and smart contract developers

Connection options are used in conjunction with a connection profile to control precisely how a gateway interacts with
a network. Using a gateway allows an application to focus on business logic rather than network topology.

In this topic, we’re going to cover:
* Why connection options are important
* How an application uses connection options
* What each connection option does

* When to use a particular connection option
Scenario
A connection option specifies a particular aspect of a gateway’s behaviour. Gateways are important for many reasons,

the primary being to allow an application to focus on business logic and smart contracts, while it manages interactions
with the many components of a network.

176 Chapter 6. Developing Applications

./gateway.html

hyperledger-fabricdocs Documentation, Release master

MagnetoCorp DigiBank

Connection
profile

CAl

MagnetoCorp

Peer2

MagnetoCorp

Ordererl

MagnetoCorp

Orderer2

DigiBank

Peer7

DigiBank

o

“issue”
e Gateway
application

Isabella

)

channel: papernet

1 l

Peer8

DigiBank

Peer9
DigiBank

Peer3

Peerl
MagnetoCorp

Wallet -

1
1
1
1
1
1
MagnetoCorp 1
1
1
1
1
1
1
1

The different interaction points where connection options control behaviour. These options are explained fully in the
text.

One example of a connection option might be to specify that the gateway used by the i ssue application should use
identity Isabella to submit transactions to the papernet network. Another might be that a gateway should wait
for all three nodes from MagnetoCorp to confirm a transaction has been committed returning control. Connection
options allow applications to specify the precise behaviour of a gateway’s interaction with the network. Without a
gateway, applications need to do a lot more work; gateways save you time, make your application more readable, and
less error prone.

Usage

We’ll describe the fiull set of connection options available to an application in a moment; let’s first see how they are
specified by the sample MagnetoCorp i ssue application:

const userName = 'Userl@orgl.example.com';
const wallet = new FileSystemWallet ('../identity/user/isabella/wallet');
const connectionOptions = {

identity: userName,

wallet: wallet,

eventHandlerOptions: {
commitTimeout: 100,
strategy: EventStrategies.MSPID_SCOPE_ANYFORTX
}

}i

await gateway.connect (connectionProfile, connectionOptions);

See how the identity and wallet options are simple properties of the connectionOptions object. They
have values userName and wallet respectively, which were set earlier in the code. Contrast these options with the
eventHandlerOptions option which is an object in its own right. It has two properties: commitTimeout :
100 (measured in seconds) and strategy: EventStrategies.MSPID_SCOPE_ANYFORTX.

See how connectionOptions is passed to a gateway as a complement to connectionProfile; the network
is identified by the connection profile and the options specify precisely how the gateway should interact with it. Let’s
now look at the available options.

6.6. Application design elements 177

hyperledger-fabricdocs Documentation, Release master

Options

Here’s a list of the available options and what they do.

* wallet identifies the wallet that will be used by the gateway on behalf of the application. See interaction 1;

the wallet is specified by the application, but it’s actually the gateway that retrieves identities from it.

A wallet must be specified; the most important decision is the type of wallet to use, whether that’s file system,
in-memory, HSM or database.

identity is the user identity that the application will use from wallet. See interaction 2a; the user identity
is specified by the application and represents the user of the application, Isabella, 2b. The identity is actually
retrieved by the gateway.

In our example, Isabella’s identity will be used by different MSPs (2¢, 2d) to identify her as being from Mag-
netoCorp, and having a particular role within it. These two facts will correspondingly determine her permission
over resources, such as being able to read and write the ledger, for example.

A user identity must be specified. As you can see, this identity is fundamental to the idea that Hyperledger
Fabric is a permissioned network — all actors have an identity, including applications, peers and orderers, which
determines their control over resources. You can read more about this idea in the membership services topic.

clientTlsIdentity is the identity that is retrieved from a wallet (3a) and used for secure communications
(3b) between the gateway and different channel components, such as peers and orderers.

Note that this identity is different to the user identity. Even though clientTlsIdentity is important for
secure communications, it is not as foundational as the user identity because its scope does not extend beyond
secure network communications.

clientTlsIdentity is optional. You are advised to set it in production environments. You should al-
ways use a different clientTlsIdentity to identity because these identities have very different mean-
ings and lifecycles. For example, if your clientTlsIdentity was compromised, then so would your
identity; it’s more secure to keep them separate.

eventHandlerOptions.commitTimeout is optional. It specifies, in seconds, the maximum amount
of time the gateway should wait for a transaction to be committed by any peer (4a) before returning control
to the application. The set of peers to use for notification is determined by the eventHandlerOptions.
strategy option. If a commitTimeout is not specified, the gateway will use a timeout of 300 seconds.

eventHandlerOptions.strategy is optional. It identifies the set of peers that a gateway should use to
listen for notification that a transaction has been committed. For example, whether to listen for a single peer, or
all peers, from its organization. It can take one of the following values:

— EventStrategies.MSPID_SCOPE_ANYFORTX Listen for any peer within the user’s organization.
In our example, see interaction points 4b; any of peer 1, peer 2 or peer 3 from MagnetoCorp can notify the
gateway.

— EventStrategies.MSPID_SCOPE_ALLFORTX This is the default value. Listen for all peers
within the user’s organization. In our example peer, see interaction point 4b. All peers from Magneto-
Corp must all have notified the gateway; peer 1, peer 2 and peer 3. Peers are only counted if they are
known/discovered and available; peers that are stopped or have failed are not included.

— EventStrategies.NETWORK_SCOPE_ANYFORTX Listen for any peer within the entire network
channel. In our example, see interaction points 4b and 4c¢; any of peer 1-3 from MagnetoCorp or peer
7-9 of DigiBank can notify the gateway.

— EventStrategies.NETWORK_SCOPE_ALLFORTX Listen for all peers within the entire network
channel. In our example, see interaction points 4b and 4c. All peers from MagnetoCorp and DigiBank
must notify the gateway; peers 1-3 and peers 7-9. Peers are only counted if they are known/discovered and
available; peers that are stopped or have failed are not included.

178

Chapter 6. Developing Applications

./wallet.html#type
../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

— <PluginEventHandlerFunction> The name of a user-defined event handler. This allows a user to
define their own logic for event handling. See how to define a plugin event handler, and examine a sample
handler.

A user-defined event handler is only necessary if you have very specific event handling requirements;
in general, one of the built-in event strategies will be sufficient. An example of a user-defined event
handler might be to wait for more than half the peers in an organization to confirm a transaction has been
committed.

If you do specify a user-defined event handler, it does not affect your application logic; it is quite separate
from it. The handler is called by the SDK during processing; it decides when to call it, and uses its results
to select which peers to use for event notification. The application receives control when the SDK has
finished its processing.

If a user-defined event handler is not specified then the default values for Event Strategies are used.

* discovery.enabled is optional and has possible values t rue or false. The default is t rue. It deter-
mines whether the gateway uses service discovery to augment the network topology specified in the connection
profile. See interaction point 6; peer’s gossip information used by the gateway.

This value will be overridden by the INITIALIIZE-WITH-DISCOVERY environment variable, which can be
setto true or false.

* discovery.asLocalhost is optional and has possible values t rue or false. The default is true. It
determines whether IP addresses found during service discovery are translated from the docker network to the
local host.

Typically developers will write applications that use docker containers for their network components such as
peers, orderers and CAs, but that do not run in docker containers themselves. This is why t rue is the default;
in production environments, applications will likely run in docker containers in the same manner as network
components and therefore address translation is not required. In this case, applications should either explicitly
specify false or use the environment variable override.

This value will be overridden by the DISCOVERY-AS-LOCALHOST environment variable, which can be set to
trueor false.

Considerations

The following list of considerations is helpful when deciding how to choose connection options.

* eventHandlerOptions.commitTimeout and eventHandlerOptions.strategy work
together. For example, commitTimeout: 100 and strategy: EventStrategies.
MSPID_SCOPE_ANYFORTX means that the gateway will wait for up to 100 seconds for anmy peer to
confirm a transaction has been committed. In contrast, specifying strategy: EventStrategies.
NETWORK_SCOPE_ALLFORTX means that the gateway will wait up to 100 seconds for all peers in all
organizations.

e The default value of eventHandlerOptions.strategy: EventStrategies.
MSPID_SCOPE_ALLFORTX will wait for all peers in the application’s organization to commit the transaction.
This is a good default because applications can be sure that all their peers have an up-to-date copy of the ledger,
minimizing concurrency issues

However, as the number of peers in an organization grows, it becomes a little unnecessary to wait for all peers,
in which case using a pluggable event handler can provide a more efficient strategy. For example the same set
of peers could be used to submit transactions and listen for notifications, on the safe assumption that consensus
will keep all ledgers synchronized.

6.6. Application design elements 179

https://hyperledger.github.io/fabric-sdk-node/master/tutorial-transaction-commit-events.html
https://github.com/hyperledger/fabric-sdk-node/blob/master/test/integration/network-e2e/sample-transaction-event-handler.js
https://github.com/hyperledger/fabric-sdk-node/blob/master/test/integration/network-e2e/sample-transaction-event-handler.js
../discovery-overview.html

hyperledger-fabricdocs Documentation, Release master

* Service discovery requires clientTlsIdentity to be set. That’s because the peers exchanging informa-
tion with an application need to be confident that they are exchanging information with entities they trust. If
clientTlsIdentity isnot set, then discovery will not be obeyed, regardless of whether or not it is set.

¢ Although applications can set connection options when they connect to the gateway, it can be necessary for
these options to be overridden by an administrator. That’s because options relate to network interactions, which
can vary over time. For example, an administrator trying to understand the effect of using service discovery on
network performance.

A good approach is to define application overrides in a configuration file which is read by the application when
it configures its connection to the gateway.

Because the discovery options enabled and asLocalHost are most frequently required to
be overridden by administrators, the environment variables INITIALIIZE-WITH-DISCOVERY and
DISCOVERY-AS-LOCALHOST are provided for convenience. The administrator should set these in the pro-
duction runtime environment of the application, which will most likely be a docker container.

6.6.8 Wallet

Audience: Architects, application and smart contract developers

A wallet contains a set of user identities. An application run by a user selects one of these identities when it connects
to a channel. Access rights to channel resources, such as the ledger, are determined using this identity in combination
with an MSP.

In this topic, we’re going to cover:
* Why wallets are important
* How wallets are organized
* Different types of wallet

» Wallet operations

Scenario

When an application connects to a network channel such as PaperNet, it selects a user identity to do so, for example
ID1. The channel MSPs associate ID1 with a role within a particular organization, and this role will ultimately
determine the application’s rights over channel resources. For example, ID1 might identify a user as a member of
the MagnetoCorp organization who can read and write to the ledger, whereas ID2 might identify an administrator in
MagnetoCorp who can add a new organization to a consortium.

180 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

MagnetoCorp DigiBank

———————— PaperNet
cAl cA2

MSP

1D1: MagnetoCorp.member
1D4: DigiBank.member

Appl [-------- e mrmmmmmmmee App2
Isabella i Balaji
-------- BondNet
Walletl Wallet2
MSP
ID1 1D1: MagnetoCorp.member ID4
1D2 ID2: MagnetoCorp.admin
1D3

Two users, Isabella and Balaji have wallets containing different identities they can use to connect to different network
channels, PaperNet and BondNet.

Consider the example of two users; Isabella from MagnetoCorp and Balaji from DigiBank. Isabella is going to use
App 1 to invoke a smart contract in PaperNet and a different smart contract in BondNet. Similarly, Balaji is going to
use App 2 to invoke smart contracts, but only in PaperNet. (It’s very easy for applications to access multiple networks
and multiple smart contracts within them.)

See how:

MagnetoCorp uses CAl to issue identities and DigiBank uses CA2 to issue identities. These identities are stored
in user wallets.

Balaji’s wallet holds a single identity, ID4 issued by CA2. Isabella’s wallet has many identities, ID1, ID2 and
ID3, issued by CAl. Wallets can hold multiple identities for a single user, and each identity can be issued by a
different CA.

Both Isabella and Balaji connect to PaperNet, and its MSPs determine that Isabella is a member of the Magne-
toCorp organization, and Balaji is a member of the DigiBank organization, because of the respective CAs that
issued their identities. (It is possible for an organization to use multiple CAs, and for a single CA to support
multiple organizations.)

Isabella can use ID1 to connect to both PaperNet and BondNet. In both cases, when Isabella uses this identity,
she is recognized as a member of MangetoCorp.

Isabella can use ID2 to connect to BondNet, in which case she is identified as an administrator of MagnetoCorp.
This gives Isabella two very different privileges: ID1 identifies her as a simple member of MagnetoCorp who
can read and write to the BondNet ledger, whereas ID2 identities her as a MagnetoCorp administrator who can
add a new organization to BondNet.

Balaji cannot connect to BondNet with ID4. If he tried to connect, ID4 would not be recognized as belonging
to DigiBank because CA?2 is not known to BondNet’s MSP.

Types

There are different types of wallets according to where they store their identities:

6.6. Application design elements 181

./application.html#construct-request
../membership/membership.html#mapping-msps-to-organizations

hyperledger-fabricdocs Documentation, Release master

& C

File Memory Database

The three different types of wallet storage: File system, In-memory and CouchDB.

* File system: This is the most common place to store wallets; file systems are pervasive, easy to understand, and
can be network mounted. They are a good default choice for wallets.

¢ In-memory: A wallet in application storage. Use this type of wallet when your application is running in a
constrained environment without access to a file system; typically a web browser. It’s worth remembering that
this type of wallet is volatile; identities will be lost after the application ends normally or crashes.

* CouchDB: A wallet stored in CouchDB. This is the rarest form of wallet storage, but for those users who want
to use the database back-up and restore mechanisms, CouchDB wallets can provide a useful option to simplify
disaster recovery.

Use factory functions provided by the Wallets class to create wallets.

Hardware Security Module

A Hardware Security Module (HSM) is an ultra-secure, tamper-proof device that stores digital identity information,
particularly private keys. HSMs can be locally attached to your computer or network accessible. Most HSMs provide
the ability to perform on-board encryption with private keys, such that the private keys never leave the HSM.

An HSM can be used with any of the wallet types. In this case the certificate for an identity will be stored in the wallet
and the private key will be stored in the HSM.

To enable the use of HSM-managed identities, an IdentityProvider must be configured with the HSM connec-
tion information and registered with the wallet. For further details, refer to the Using wallets to manage identities
tutorial.

Structure

A single wallet can hold multiple identities, each issued by a particular Certificate Authority. Each identity has a
standard structure comprising a descriptive label, an X.509 certificate containing a public key, a private key, and some
Fabric-specific metadata. Different wallet types map this structure appropriately to their storage mechanism.

wallet 1

certificate 1o certificate 2|«
private key 1 | private key 2 |
metadatal | metadata 2 | ‘
issue issue issue
CA 1 CA X

182 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.Wallets.html
https://hyperledger.github.io/fabric-sdk-node/master/tutorial-wallet.html

hyperledger-fabricdocs Documentation, Release master

A Fabric wallet can hold multiple identities with certificates issued by a different Certificate Authority. Identities
comprise certificate, private key and Fabric metadata.

There’s a couple of key class methods that make it easy to manage wallets and identities:

const identity: X509Identity = {
credentials: {
certificate: certificatePEM,
privateKey: privateKeyPEM,
}o
mspId: 'OrglMSP',
type: 'X.509",
}i
await wallet.put (identityLabel, identity);

See how an identity is created that has metadata OrglMSP, a certificate and a privateKey. See how
wallet .put () adds this identity to the wallet with a particular identityLabel.

The Gateway class only requires the mspId and type metadata to be set for an identity — Org1lMSP and X.509
in the above example. It currently uses the MSP ID value to identify particular peers from a connection profile, for
example when a specific notification strategy is requested. In the DigiBank gateway file networkConnection.
yaml, see how Org1MSP notifications will be associated with peer0.orgl .example.com:

organizations:
Orgl:
mspid: OrglMSP

peers:
- peer0.orgl.example.com

You really don’t need to worry about the internal structure of the different wallet types, but if you’re interested, navigate
to a user identity folder in the commercial paper sample:

magnetocorp/identity/user/isabella/
wallet/
Userl@orgl.example.com.id

You can examine these files, but as discussed, it’s easier to use the SDK to manipulate these data.

Operations

The different wallet types all implement a common Wallet interface which provides a standard set of APIs to man-
age identities. It means that applications can be made independent of the underlying wallet storage mechanism; for
example, File system and HSM wallets are handled in a very similar way.

6.6. Application design elements 183

./connectionprofile.html
./connectoptions.html
https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.Wallet.html

hyperledger-fabricdocs Documentation, Release master

put/add
identity

2

create/ 3 get/read
open identity

4

remove/delete
identity

Wallets follow a lifecycle: they can be created or opened, and identities can be read, added and deleted.

An application can use a wallet according to a simple lifecycle. Wallets can be opened or created, and subsequently
identities can be added, updated, read and deleted. Spend a little time on the different Wallet methods in the JSDoc
to see how they work; the commercial paper tutorial provides a nice example in addToWallet. js:

const wallet = await Wallets.newFileSystemWallet ('../identity/user/isabella/wallet');
const cert = fs.readFileSync (path.join(credPath, '.../Userl@orgl.example.com—cert.pem
—")).toString();

const key = fs.readFileSync (path.join(credPath, '.../_sk')).toString();

const identitylLabel = 'Userl@orgl.example.com';

const identity = {

credentials: {
certificate: cert,
privateKey: key,
}I
mspId: 'OrglMSP',
type: 'X.509'",
}i

await wallet.put (identityLabel, identity);

Notice how:
* When the program is first run, a wallet is created on the local file system at . . . /isabella/wallet.
* acertificate cert and private key are loaded from the file system.
e anew X.509 identity is created with cert, key and OrglMSP.
* the new identity is added to the wallet with wallet .put () with alabel Userl@orgl.example.comn.

That’s everything you need to know about wallets. You’ve seen how they hold identities that are used by applications
on behalf of users to access Fabric network resources. There are different types of wallets available depending on your
application and security needs, and a simple set of APIs to help applications manage wallets and the identities within
them.

6.6.9 Gateway

Audience: Architects, application and smart contract developers

A gateway manages the network interactions on behalf of an application, allowing it to focus on business logic.
Applications connect to a gateway and then all subsequent interactions are managed using that gateway’s configuration.

184 Chapter 6. Developing Applications

https://hyperledger.github.io/fabric-sdk-node/master/module-fabric-network.Wallet.html

hyperledger-fabricdocs Documentation, Release master

In this topic, we’re going to cover:

Why gateways are important

How applications use a gateway

How to define a static gateway

How to define a dynamic gateway for service discovery

Using multiple gateways

Scenario

A Hyperledger Fabric network channel can constantly change. The peer, orderer and CA components, contributed by
the different organizations in the network, will come and go. Reasons for this include increased or reduced business
demand, and both planned and unplanned outages. A gateway relieves an application of this burden, allowing it to
focus on the business problem it is trying to solve.

'SR
Ordererl Orderer2
MagnetoCorp DigiBank
N~ Peer2 Peer6
MagnetoCorp DigiBank
"""" ! Y i
. 1 e
issue Gateway ' Peerl {/intra org intra org , Gateway buy
application 1 ! MagnetoCorp |~ BOSSIP gossip ! 2 application
' s 1
________ ;} ‘-\“ | QSR

Peer3 |interorg | peer7

MagnetoCorp gossip DigiBank

A MagnetoCorp and DigiBank applications (issue and buy) delegate their respective network interactions to their
gateways. Each gateway understands the network channel topology comprising the multiple peers and orderers of two
organizations MagnetoCorp and DigiBank, leaving applications to focus on business logic. Peers can talk to each
other both within and across organizations using the gossip protocol.

A gateway can be used by an application in two different ways:

Static: The gateway configuration is completely defined in a connection profile. All the peers, orderers and CAs
available to an application are statically defined in the connection profile used to configure the gateway. For
peers, this includes their role as an endorsing peer or event notification hub, for example. You can read more
about these roles in the connection profile topic.

The SDK will use this static topology, in conjunction with gateway connection options, to manage the transaction
submission and notification processes. The connection profile must contain enough of the network topology to
allow a gateway to interact with the network on behalf of the application; this includes the network channels,
organizations, orderers, peers and their roles.

Dynamic: The gateway configuration is minimally defined in a connection profile. Typically, one or two peers
from the application’s organization are specified, and they use service discovery to discover the available net-
work topology. This includes peers, orderers, channels, deployed smart contracts and their endorsement policies.
(In production environments, a gateway configuration should specify at least two peers for availability.)

The SDK will use all of the static and discovered topology information, in conjunction with gateway connection
options, to manage the transaction submission and notification processes. As part of this, it will also intelligently

6.6. Application design elements 185

./connectionprofile.html
./connectionprofile.html
../discovery-overview.html

hyperledger-fabricdocs Documentation, Release master

use the discovered topology; for example, it will calculate the minimum required endorsing peers using the
discovered endorsement policy for the smart contract.

You might ask yourself whether a static or dynamic gateway is better? The trade-off is between predictability and
responsiveness. Static networks will always behave the same way, as they perceive the network as unchanging. In
this sense they are predictable — they will always use the same peers and orderers if they are available. Dynamic
networks are more responsive as they understand how the network changes — they can use newly added peers and
orderers, which brings extra resilience and scalability, at potentially some cost in predictability. In general it’s fine to
use dynamic networks, and indeed this the default mode for gateways.

Note that the same connection profile can be used statically or dynamically. Clearly, if a profile is going to be used
statically, it needs to be comprehensive, whereas dynamic usage requires only sparse population.

Both styles of gateway are transparent to the application; the application program design does not change whether
static or dynamic gateways are used. This also means that some applications may use service discovery, while others
may not. In general using dynamic discovery means less definition and more intelligence by the SDK;; it is the default.

Connect

When an application connects to a gateway, two options are provided. These are used in subsequent SDK processing:

await gateway.connect (connectionProfile, connectionOptions);

* Connection profile: connectionProfile is the gateway configuration that will be used for transaction
processing by the SDK, whether statically or dynamically. It can be specified in YAML or JSON, though it must
be converted to a JSON object when passed to the gateway:

let connectionProfile = yaml.safeload(fs.readFileSync('../gateway/paperNet.yaml',
—'utf8'));

Read more about connection profiles and how to configure them.

* Connection options: connectionOptions allow an application to declare rather than implement desired
transaction processing behaviour. Connection options are interpreted by the SDK to control interaction patterns
with network components, for example to select which identity to connect with, or which peers to use for event
notifications. These options significantly reduce application complexity without compromising functionality.
This is possible because the SDK has implemented much of the low level logic that would otherwise be required
by applications; connection options control this logic flow.

Read about the list of available connection options and when to use them.

Static

Static gateways define a fixed view of a network. In the MagnetoCorp scenario, a gateway might identify a single peer
from MagnetoCorp, a single peer from DigiBank, and a MagentoCorp orderer. Alternatively, a gateway might define
all peers and orderers from MagnetCorp and DigiBank. In both cases, a gateway must define a view of the network
sufficient to get commercial paper transactions endorsed and distributed.

Applications can use a gateway statically by explicitly specifying the connect option discovery: {
enabled:false } on the gateway.connect () APIL Alternatively, the environment variable setting
FABRIC_SDK_DISCOVERY=false will always override the application choice.

Examine the connection profile used by the MagnetoCorp issue application. See how all the peers, orderers and even
CAs are specified in this file, including their roles.

186 Chapter 6. Developing Applications

./connectionprofile.html
./connectionoptions.html
https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml

hyperledger-fabricdocs Documentation, Release master

It’s worth bearing in mind that a static gateway represents a view of a network at a moment in time. As networks
change, it may be important to reflect this in a change to the gateway file. Applications will automatically pick up
these changes when they re-load the gateway file.

Dynamic

Dynamic gateways define a small, fixed starting point for a network. In the MagnetoCorp scenario, a dynamic gateway
might identify just a single peer from MagnetoCorp; everything else will be discovered! (To provide resiliency, it might
be better to define two such bootstrap peers.)

If service discovery is selected by an application, the topology defined in the gateway file is augmented with that
produced by this process. Service discovery starts with the gateway definition, and finds all the connected peers and
orderers within the MagnetoCorp organization using the gossip protocol. If anchor peers have been defined for a
channel, then service discovery will use the gossip protocol across organizations to discover components within the
connected organization. This process will also discover smart contracts installed on peers and their endorsement poli-
cies defined at a channel level. As with static gateways, the discovered network must be sufficient to get commercial
paper transactions endorsed and distributed.

Dynamic gateways are the default setting for Fabric applications. They can be explicitly specified using the connect
optiondiscovery: { enabled:true } onthegateway.connect () APL Alternatively, the environment
variable setting FABRIC_SDK_DISCOVERY=true will always override the application choice.

A dynamic gateway represents an up-to-date view of a network. As networks change, service discovery will ensure that
the network view is an accurate reflection of the topology visible to the application. Applications will automatically
pick up these changes; they do not even need to re-load the gateway file.

Multiple gateways
Finally, it is straightforward for an application to define multiple gateways, both for the same or different networks.
Moreover, applications can use the name gateway both statically and dynamically.
It can be helpful to have multiple gateways. Here are a few reasons:
* Handling requests on behalf of different users.
* Connecting to different networks simultaneously.
 Testing a network configuration, by simultaneously comparing its behaviour with an existing configuration.

This topic covers how to develop a client application and smart contract to solve a business problem using Hyperledger
Fabric. In a real world Commercial Paper scenario, involving multiple organizations, you’ll learn about all the
concepts and tasks required to accomplish this goal. We assume that the blockchain network is already available.

The topic is designed for multiple audiences:
* Solution and application architect
* Client application developer
* Smart contract developer
* Business professional

You can choose to read the topic in order, or you can select individual sections as appropriate. Individual topic sections
are marked according to reader relevance, so whether you’re looking for business or technical information it’1l be clear
when a topic is for you.

The topic follows a typical software development lifecycle. It starts with business requirements, and then covers all
the major technical activities required to develop an application and smart contract to meet these requirements.

6.6. Application design elements 187

../discovery-overview.html
../gossip.html
../glossary.html#anchor-peer

hyperledger-fabricdocs Documentation, Release master

If you’d prefer, you can try out the commercial paper scenario immediately, following an abbreviated explanation, by
running the commercial paper tutorial. You can return to this topic when you need fuller explanations of the concepts

introduced in the tutorial.

188 Chapter 6. Developing Applications

../tutorial/commercial_paper.html

CHAPTER /

Tutorials

Application developers can use the Fabric tutorials to get started building their own solutions. Start working with
Fabric by deploying the test network on your local machine. You can then use the steps provided by the Deploying
a smart contract to a channel tutorial to deploy and test your smart contracts. The Writing Your First Application
tutorial provides an introduction to how to use the APIs provided by the Fabric SDKs to invoke smart contracts from
your client applications. For an in depth overview of how Fabric applications and smart contracts work together, you
can visit the Developing Applications topic.

Network operators can use the Deploying a smart contract to a channel tutorial and the Creating a channel tutorial
series to learn important aspects of administering a running network. Both network operators and application devel-
opers can use the tutorials on Private data and CouchDB to explore important Fabric features. When you are ready to
deploy Hyperledger Fabric in production, see the guide for Deploying a production network.

There are two tutorials for updating a channel: Updating a channel configuration and Updating the capability level of
a channel, while Upgrading your components shows how to upgrade components like peers, ordering nodes, SDKs,
and more.

Finally, we provide an introduction to how to write a basic smart contract, Writing Your First Chaincode.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the S7ill Have Questions? page for some tips on where to find additional help.

7.1 Deploying a smart contract to a channel

End users interact with the blockchain ledger by invoking smart contracts. In Hyperledger Fabric, smart contracts are
deployed in packages referred to as chaincode. Organizations that want to validate transactions or query the ledger
need to install a chaincode on their peers. After a chaincode has been installed on the peers joined to a channel,
channel members can deploy the chaincode to the channel and use the smart contracts in the chaincode to create or
update assets on the channel ledger.

A chaincode is deployed to a channel using a process known as the Fabric chaincode lifecycle. The Fabric chaincode
lifecycle allows multiple organizations to agree how a chaincode will be operated before it can be used to create

189

./test_network.html
./private_data_tutorial.html
./couchdb_tutorial.html

hyperledger-fabricdocs Documentation, Release master

transactions. For example, while an endorsement policy specifies which organizations need to execute a chaincode
to validate a transaction, channel members need to use the Fabric chaincode lifecycle to agree on the chaincode
endorsement policy. For a more in-depth overview about how to deploy and manage a chaincode on a channel, see
Fabric chaincode lifecycle.

You can use this tutorial to learn how to use the peer lifecycle chaincode commands to deploy a chaincode to a channel
of the Fabric test network. Once you have an understanding of the commands, you can use the steps in this tutorial to
deploy your own chaincode to the test network, or to deploy chaincode to a production network. In this tutorial, you
will deploy the asset-transfer (basic) chaincode that is used by the Writing your first application tutorial.

Note: These instructions use the Fabric chaincode lifecycle introduced in the v2.0 release. If you would like to use
the previous lifecycle to install and instantiate a chaincode, visit the v1.4 version of the Fabric documentation.

7.1.1 Start the network

We will start by deploying an instance of the Fabric test network. Before you begin, make sure that that you have
installed the Prerequisites and Installed the Samples, Binaries and Docker Images. Use the following command to
navigate to the test network directory within your local clone of the fabric-samples repository:

’ cd fabric-samples/test-network

For the sake of this tutorial, we want to operate from a known initial state. The following command will kill any active
or stale docker containers and remove previously generated artifacts.

’./network.sh down

You can then use the following command to start the test network:

’ ./network.sh up createChannel

The createChannel command creates a channel named mychannel with two channel members, Orgl and Org?2.
The command also joins a peer that belongs to each organization to the channel. If the network and the channel are
created successfully, you can see the following message printed in the logs:

========= Channel successfully joined ===========

We can now use the Peer CLI to deploy the asset-transfer (basic) chaincode to the channel using the following steps:
o Step one: Package the smart contract
e Step two: Install the chaincode package
e Step three: Approve a chaincode definition

e Step four: Committing the chaincode definition to the channel

7.1.2 Setup Logspout (optional)

This step is not required but is extremely useful for troubleshooting chaincode. To monitor the logs of the smart
contract, an administrator can view the aggregated output from a set of Docker containers using the Logspout tool.
The tool collects the output streams from different Docker containers into one place, making it easy to see what’s
happening from a single window. This can help administrators debug problems when they install smart contracts or
developers when they invoke smart contracts. Because some containers are created purely for the purposes of starting
a smart contract and only exist for a short time, it is helpful to collect all of the logs from your network.

A script to install and configure Logspout, monitordocker. sh, is already included in the commercial-paper
sample in the Fabric samples. We will use the same script in this tutorial as well. The Logspout tool will continuously

190 Chapter 7. Tutorials

./chaincode_lifecycle.html
./commands/peerlifecycle.html
./write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4
prereqs.html
install.html
https://logdna.com/what-is-logspout/

hyperledger-fabricdocs Documentation, Release master

stream logs to your terminal, so you will need to use a new terminal window. Open a new terminal and navigate to the
test-network directory.

cd fabric-samples/test-network

You can run the monitordocker.sh script from any directory. For ease of use, we will copy the
monitordocker. sh script from the commercial-paper sample to your working directory

cp ../commercial-paper/organization/digibank/configuration/cli/monitordocker.sh
if you're not sure where it is
find . —-name monitordocker.sh

You can then start Logspout by running the following command:

./monitordocker.sh net_test

You should see output similar to the following:

Starting monitoring on all containers on the network net_basic

Unable to find image 'gliderlabs/logspout:latest' locally

latest: Pulling from gliderlabs/logspout

4fe2aded4980c: Pull complete

decca452f519: Pull complete

ad60f6b6c009: Pull complete

Digest: sha256:374e06b17b004bddc5445525796b5f7adb8234d64c5¢c5d663095fccatfbbedc26
Status: Downloaded newer image for gliderlabs/logspout:latest
1£99d130£15cf01706eda3el1£040496ec885036d485cbbbcc0da4a567ad84361

You will not see any logs at first, but this will change when we deploy our chaincode. It can be helpful to make this
terminal window wide and the font small.

7.1.3 Package the smart contract

We need to package the chaincode before it can be installed on our peers. The steps are different if you want to install
a smart contract written in Go, JavaScript, or Typescript.

Go

Before we package the chaincode, we need to install the chaincode dependencies. Navigate to the folder that contains
the Go version of the asset-transfer (basic) chaincode.

cd fabric-samples/asset-transfer-basic/chaincode-go

The sample uses a Go module to install the chaincode dependencies. The dependencies are listed in a go . mod file in
the asset-transfer-basic/chaincode-go directory. You should take a moment to examine this file.

$ cat go.mod
module github.com/hyperledger/fabric-samples/asset-transfer-basic/chaincode-go

go 1.14

require (
github.com/golang/protobuf v1.3.2
github.com/hyperledger/fabric-chaincode-go v0.0.0-20200424173110-d7076418£212
github.com/hyperledger/fabric-contract—-api-go v1.1.0

(continues on next page)

7.1. Deploying a smart contract to a channel 191

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

github.com/hyperledger/fabric-protos—-go v0.0.0-20200424173316-dd554ba3746e
github.com/stretchr/testify v1.5.1

The go.mod file imports the Fabric contract API into the smart contract package. You can open
asset-transfer-basic/chaincode-go/chaincode/smartcontract.go in a text editor to see how
the contract API is used to define the SmartContract type at the beginning of the smart contract:

// SmartContract provides functions for managing an Asset
type SmartContract struct {
contractapi.Contract

The SmartContract type is then used to create the transaction context for the functions defined within the smart
contract that read and write data to the blockchain ledger.

// CreateAsset issues a new asset to the world state with given details.
func (s *SmartContract) CreateAsset (ctx contractapi.TransactionContextInterface, id_
—string, color string, size int, owner string, appraisedValue int) error {
exists, err := s.AssetExists(ctx, id)
if err != nil {
return err
}

if exists {

return fmt.Errorf ("the asset already exists", id)
}
asset := Asset{

ID: id,

Color: color,

Size: size,

Owner: owner,

AppraisedvValue: appraisedvalue,
}

assetJSON, err := json.Marshal (asset)
if err != nil {
return err

return ctx.GetStub () .PutState(id, assetJSON)

You can learn more about the Go contract API by visiting the API documentation and the smart contract processing
topic.

To install the smart contract dependencies, run the following command from the asset-transfer-basic/
chaincode-go directory.

GO111MODULE=on go mod vendor

If the command is successful, the go packages will be installed inside a vendor folder.

Now that we that have our dependencies, we can create the chaincode package. Navigate back to our working directory
in the test—network folder so that we can package the chaincode together with our other network artifacts.

cd ../../test-network

192 Chapter 7. Tutorials

https://github.com/hyperledger/fabric-contract-api-go
developapps/smartcontract.html
developapps/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

You can use the peer CLI to create a chaincode package in the required format. The peer binaries are located in
the bin folder of the fabric—samples repository. Use the following command to add those binaries to your CLI
Path:

’export PATH=S${PWD}/../bin:$PATH

You also need to set the FABRIC_CFG_PATH to point to the core. yaml file in the fabric-samples repository:

’export FABRIC_CFG_PATH=$PWD/../config/

To confirm that you are able to use the peer CLI, check the version of the binaries. The binaries need to be version
2.0.0 or later to run this tutorial.

’peer version

You can now create the chaincode package using the peer lifecycle chaincode package command:

peer lifecycle chaincode package basic.tar.gz —--path ../asset-transfer-basic/
—chaincode-go/ --lang golang —--label basic_1.0

This command will create a package named basic.tar.gz in your current directory. The ——1ang flag is used to
specify the chaincode language and the ——path flag provides the location of your smart contract code. The path must
be a fully qualified path or a path relative to your present working directory. The ——label flag is used to specify
a chaincode label that will identity your chaincode after it is installed. It is recommended that your label include the
chaincode name and version.

Now that we created the chaincode package, we can install the chaincode on the peers of the test network.
JavaScript

Before we package the chaincode, we need to install the chaincode dependencies. Navigate to the folder that contains
the JavaScript version of the asset-transfer (basic) chaincode.

cd fabric-samples/asset-transfer-basic/chaincode-javascript

The dependencies are listed in the package.json file in the asset-transfer-basic/
chaincode-javascript directory. You should take a moment to examine this file. You can find the
dependencies section displayed below:

"dependencies": {
"fabric-contract-api": "*2.0.0",
"fabric-shim": "*2.0.0"

The package. json file imports the Fabric contract class into the smart contract package. You can open 1ib/
assetTransfer. js in a text editor to see the contract class imported into the smart contract and used to create the
asset-transfer (basic) class.

const { Contract } = require('fabric-contract—api');

class AssetTransfer extends Contract {

The AssetTransfer class provides the transaction context for the functions defined within the smart contract that
read and write data to the blockchain ledger.

7.1. Deploying a smart contract to a channel 193

commands/peerlifecycle.html#peer-lifecycle-chaincode-package

hyperledger-fabricdocs Documentation, Release master

async CreateAsset (ctx, id, color, size, owner, appraisedvValue) {
const asset = {
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedvalue,

}i

await ctx.stub.putState(id, Buffer.from(JSON.stringify (asset)));

You can learn more about the JavaScript contract API by visiting the API documentation and the smart contract
processing topic.

To install the smart contract dependencies, run the following command from the asset-transfer-basic/
chaincode-javascript directory.

npm install

If the command is successful, the JavaScript packages will be installed inside a node_modules folder.

Now that we that have our dependencies, we can create the chaincode package. Navigate back to our working directory
in the test—network folder so that we can package the chaincode together with our other network artifacts.

cd ../../test-network

You can use the peer CLI to create a chaincode package in the required format. The peer binaries are located in
the bin folder of the fabric—samples repository. Use the following command to add those binaries to your CLI
Path:

’export PATH=${PWD}/../bin:S$PATH

You also need to set the FABRIC_CFG_PATH to point to the core . yaml file in the fabric-samples repository:

’ export FABRIC_CFG_PATH=S$PWD/../config/

To confirm that you are able to use the peer CLI, check the version of the binaries. The binaries need to be version
2.0.0 or later to run this tutorial.

’peer version

You can now create the chaincode package using the peer lifecycle chaincode package command:

peer lifecycle chaincode package basic.tar.gz —--path ../asset-transfer-basic/
—chaincode-javascript/ --lang node —-label basic_1.0

This command will create a package named basic.tar.gz in your current directory. The ——1ang flag is used to
specify the chaincode language and the ——path flag provides the location of your smart contract code. The ——1label
flag is used to specify a chaincode label that will identity your chaincode after it is installed. It is recommended that
your label include the chaincode name and version.

Now that we created the chaincode package, we can install the chaincode on the peers of the test network.

194 Chapter 7. Tutorials

https://hyperledger.github.io/fabric-chaincode-node/master/api/
developapps/smartcontract.html
developapps/smartcontract.html
commands/peerlifecycle.html#peer-lifecycle-chaincode-package

hyperledger-fabricdocs Documentation, Release master

Typescript

Before we package the chaincode, we need to install the chaincode dependencies. Navigate to the folder that contains
the TypeScript version of the asset-transfer (basic) chaincode.

cd fabric-samples/asset-transfer-basic/chaincode-typescript

The dependencies are listed in the package.json file in the asset-transfer-basic/
chaincode-typescript directory. You should take a moment to examine this file. You can find the
dependencies section displayed below:

"dependencies": {
"fabric-contract-api": "*2.0.0",
"fabric-shim": "*2.0.0"

The package. json file imports the Fabric contract class into the smart contract package. You can open src/
assetTransfer.ts in a text editor to see the contract class imported into the smart contract and used to create the
asset-transfer (basic) class. Also notice that the Asset class is imported from the type definition file asset . ts.

import { Context, Contract } from 'fabric-contract-api';
import { Asset } from './asset';

export class AssetTransfer extends Contract {

The AssetTransfer class provides the transaction context for the functions defined within the smart contract that
read and write data to the blockchain ledger.

// CreateAsset issues a new asset to the world state with given details.
public async CreateAsset (ctx: Context, id: string, color: string, size: number,
—owner: string, appraisedvValue: number) {
const asset = {
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedvValue,
}i

await ctx.stub.putState(id, Buffer.from(JSON.stringify (asset)));

You can learn more about the JavaScript contract API by visiting the API documentation and the smart contract
processing topic.

To install the smart contract dependencies, run the following command from the asset-transfer-basic/
chaincode-typescript directory.

npm install

If the command is successful, the JavaScript packages will be installed inside a node_modules folder.

Now that we that have our dependencies, we can create the chaincode package. Navigate back to our working directory
in the test-network folder so that we can package the chaincode together with our other network artifacts.

cd ../../test-network

7.1. Deploying a smart contract to a channel 195

https://hyperledger.github.io/fabric-chaincode-node/master/api/
developapps/smartcontract.html
developapps/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

You can use the peer CLI to create a chaincode package in the required format. The peer binaries are located in
the bin folder of the fabric—samples repository. Use the following command to add those binaries to your CLI
Path:

’export PATH=S${PWD}/../bin:$PATH

You also need to set the FABRIC_CFG_PATH to point to the core. yaml file in the fabric-samples repository:

’ export FABRIC_CFG_PATH=S$PWD/../config/

To confirm that you are able to use the peer CLI, check the version of the binaries. The binaries need to be version
2.0.0 or later to run this tutorial.

’peer version

You can now create the chaincode package using the peer lifecycle chaincode package command:

peer lifecycle chaincode package basic.tar.gz —--path ../asset-transfer-basic/
—chaincode-typescript/ --lang node —-label basic_1.0

This command will create a package named basic.tar.gz in your current directory. The ——1ang flag is used to
specify the chaincode language and the ——path flag provides the location of your smart contract code. The ——1abel
flag is used to specify a chaincode label that will identity your chaincode after it is installed. It is recommended that
your label include the chaincode name and version.

Now that we created the chaincode package, we can install the chaincode on the peers of the test network.

7.1.4 Install the chaincode package

After we package the asset-transfer (basic) smart contract, we can install the chaincode on our peers. The chaincode
needs to be installed on every peer that will endorse a transaction. Because we are going to set the endorsement policy
to require endorsements from both Orgl and Org2, we need to install the chaincode on the peers operated by both
organizations:

* peer(.orgl.example.com
* peerQ.org2.example.com

Let’s install the chaincode on the Orgl peer first. Set the following environment variables to operate the peer CLI as
the Orgl admin user. The CORE_PEER_ADDRESS will be set to point to the Orgl peer, peer0.orgl.example.
com.

export CORE_PEER_TLS_ENABLED=true

export CORE_PEER_LOCALMSPID="OrglMSP"

export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/orgl.
—example.com/peers/peer0.orgl.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/orgl.example.
—com/users/Admin@Rorgl.example.com/msp

export CORE_PEER_ADDRESS=localhost:7051

Issue the peer lifecycle chaincode install command to install the chaincode on the peer:

peer lifecycle chaincode install basic.tar.gz

If the command is successful, the peer will generate and return the package identifier. This package ID will be used to
approve the chaincode in the next step. You should see output similar to the following:

196 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-package
commands/peerlifecycle.html#peer-lifecycle-chaincode-install

hyperledger-fabricdocs Documentation, Release master

2020-07-16 10:09:57.534 CDT [cli.lifecycle.chaincode] submitInstallProposal —-> INFO_,
001 Installed remotely: response:<status:200 payload:"\nJbasic_1.
—0:e2db7f693d4aa6156e652741d5606e9c5f0de%9ebb88c5721cb8248c3aead8123\022\tbasic_1.0" >
2020-07-16 10:09:57.534 CDT [cli.lifecycle.chaincode] submitInstallProposal —-> INFO_,
002 Chaincode code package identifier: basic_1.
—0:e2db7£693d4aa6156e652741d5606e9c5£0de%ebb88c5721cb8248c3aead8123

We can now install the chaincode on the Org2 peer. Set the following environment variables to operate as the Org2
admin and target target the Org2 peer, peer0.org2.example.com.

export CORE_PEER_LOCALMSPID="Org2MSP"

export CORE_PEER_TLS_ROOTCERT_FILE=S${PWD}/organizations/peerOrganizations/org2.
—example.com/peers/peer0.org2.example.com/tls/ca.crt

export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
—example.com/peers/peer(.org2.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
—com/users/Admin@org2.example.com/msp

export CORE_PEER_ADDRESS=localhost:9051

Issue the following command to install the chaincode:

peer lifecycle chaincode install basic.tar.gz

The chaincode is built by the peer when the chaincode is installed. The install command will return any build errors
from the chaincode if there is a problem with the smart contract code.

7.1.5 Approve a chaincode definition

After you install the chaincode package, you need to approve a chaincode definition for your organization. The
definition includes the important parameters of chaincode governance such as the name, version, and the chaincode
endorsement policy.

The set of channel members who need to approve a chaincode before it can be deployed is governed by the /
Channel/Application/LifeycleEndorsement policy. By default, this policy requires that a majority of
channel members need to approve a chaincode before it can used on a channel. Because we have only two organiza-
tions on the channel, and a majority of 2 is 2, we need approve a chaincode definition of asset-transfer (basic) as Orgl
and Org2.

If an organization has installed the chaincode on their peer, they need to include the packagelD in the chaincode
definition approved by their organization. The package ID is used to associate the chaincode installed on a peer with
an approved chaincode definition, and allows an organization to use the chaincode to endorse transactions. You can
find the package ID of a chaincode by using the peer lifecycle chaincode queryinstalled command to query your peer.

peer lifecycle chaincode queryinstalled

The package ID is the combination of the chaincode label and a hash of the chaincode binaries. Every peer will
generate the same package ID. You should see output similar to the following:

Installed chaincodes on peer:
Package ID: basic_1.
—0:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3e£94008615704007£3, Label: basic_1.0

We are going to use the package ID when we approve the chaincode, so let’s go ahead and save it as an environment
variable. Paste the package ID returned by peer lifecycle chaincode queryinstalled into the com-
mand below. Note: The package ID will not be the same for all users, so you need to complete this step using the
package ID returned from your command window in the previous step.

7.1. Deploying a smart contract to a channel 197

commands/peerlifecycle.html#peer-lifecycle-chaincode-queryinstalled

hyperledger-fabricdocs Documentation, Release master

export CC_PACKAGE_ID=basic_1.
—0:69de748301770f6ef64bd42aabbb6chb291df20aa39542¢c3ef94008615704007£3

Because the environment variables have been set to operate the peer CLI as the Org2 admin, we can approve the
chaincode definition of asset-transfer (basic) as Org2. Chaincode is approved at the organization level, so the command
only needs to target one peer. The approval is distributed to the other peers within the organization using gossip.
Approve the chaincode definition using the peer lifecycle chaincode approveformyorg command:

peer lifecycle chaincode approveformyorg -o localhost:7050 ——
—ordererTLSHostnameOverride orderer.example.com —--channelID mychannel —--name basic --
—version 1.0 —--package-id $CC_PACKAGE_ID --sequence 1 —-tls —--cafile "S${PWD}/
—organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
—tlscacerts/tlsca.example.com-cert.pem"

The command above uses the ——package-id flag to include the package identifier in the chaincode definition.
The ——sequence parameter is an integer that keeps track of the number of times a chaincode has been defined
or updated. Because the chaincode is being deployed to the channel for the first time, the sequence number is 1.
When the asset-transfer (basic) chaincode is upgraded, the sequence number will be incremented to 2. If you are
using the low level APIs provided by the Fabric Chaincode Shim API, you could pass the ——init-required flag
to the command above to request the execution of the Init function to initialize the chaincode. The first invoke of
the chaincode would need to target the Init function and include the ——isInit flag before you could use the other
functions in the chaincode to interact with the ledger.

We could have provided a —-—-signature-policy or ——channel-config-policy argument to the
approveformyorg command to specify a chaincode endorsement policy. The endorsement policy specifies how
many peers belonging to different channel members need to validate a transaction against a given chaincode. Because
we did not set a policy, the definition of asset-transfer (basic) will use the default endorsement policy, which requires
that a transaction be endorsed by a majority of channel members present when the transaction is submitted. This
implies that if new organizations are added or removed from the channel, the endorsement policy is updated automat-
ically to require more or fewer endorsements. In this tutorial, the default policy will require a majority of 2 out of 2
and transactions will need to be endorsed by a peer from Orgl and Org2. If you want to specify a custom endorsement
policy, you can use the Endorsement Policies operations guide to learn about the policy syntax.

You need to approve a chaincode definition with an identity that has an admin role. As a result, the
CORE_PEER_MSPCONFIGPATH variable needs to point to the MSP folder that contains an admin identity. You
cannot approve a chaincode definition with a client user. The approval needs to be submitted to the ordering service,
which will validate the admin signature and then distribute the approval to your peers.

We still need to approve the chaincode definition as Orgl. Set the following environment variables to operate as the
Orgl admin:

export CORE_PEER_LOCALMSPID="OrglMSP"

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/orgl.example.
—com/users/Admin@Rorgl.example.com/msp

export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/orgl.
—example.com/peers/peer0.orgl.example.com/tls/ca.crt

export CORE_PEER_ADDRESS=localhost:7051

You can now approve the chaincode definition as Orgl.

peer lifecycle chaincode approveformyorg -o localhost:7050 ——
—ordererTLSHostnameOverride orderer.example.com —--channelID mychannel —--name basic —--
—version 1.0 --package-id $CC_PACKAGE_ID --sequence 1 —--tls —--cafile "${PWD}/
—sorganizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
—tlscacerts/tlsca.example.com-cert.pem"

We now have the majority we need to deploy the asset-transfer (basic) the chaincode to the channel. While only a

198 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-approveformyorg
endorsement-policies.html

hyperledger-fabricdocs Documentation, Release master

majority of organizations need to approve a chaincode definition (with the default policies), all organizations need to
approve a chaincode definition to start the chaincode on their peers. If you commit the definition before a channel
member has approved the chaincode, the organization will not be able to endorse transactions. As a result, it is
recommended that all channel members approve a chaincode before committing the chaincode definition.

7.1.6 Committing the chaincode definition to the channel

After a sufficient number of organizations have approved a chaincode definition, one organization can commit the
chaincode definition to the channel. If a majority of channel members have approved the definition, the commit
transaction will be successful and the parameters agreed to in the chaincode definition will be implemented on the
channel.

You can use the peer lifecycle chaincode checkcommitreadiness command to check whether channel members have
approved the same chaincode definition. The flags used for the checkcommitreadiness command are identical to
the flags used to approve a chaincode for your organization. However, you do not need to include the -—package—id
flag.

peer lifecycle chaincode checkcommitreadiness --channelID mychannel --name basic —-
—version 1.0 --sequence 1 —-tls --cafile "$ /organizations/ordererOrganizations/
—example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
———output Json

The command will produce a JSON map that displays if a channel member has approved the parameters that were
specified in the checkcommitreadiness command:

{
"Approvals": {
"OrglMSP": true,
"Org2MSP": true

Since both organizations that are members of the channel have approved the same parameters, the chaincode definition
is ready to be committed to the channel. You can use the peer lifecycle chaincode commit command to commit the
chaincode definition to the channel. The commit command also needs to be submitted by an organization admin.

peer lifecycle chaincode commit -o localhost:7050 —--ordererTLSHostnameOverride
—orderer.example.com —-channelID mychannel —--name basic —--version 1.0 —-—-sequence 1 ——
—tls —--cafile "$ /organizations/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" --peerAddresses,,
—localhost:7051 —--tlsRootCertFiles "$ /organizations/peerOrganizations/orgl.
—example.com/peers/peer0.orgl.example.com/tls/ca.crt" —--peerAddresses localhost:9051
———-tlsRootCertFiles "$ /organizations/peerOrganizations/org2.example.com/peers/
—peer0.org2.example.com/tls/ca.crt"

The transaction above uses the ——peerAddresses flag to target peer0.orgl.example.com from Orgl and
peer0.org2.example.com from Org2. The commit transaction is submitted to the peers joined to the channel
to query the chaincode definition that was approved by the organization that operates the peer. The command needs to
target the peers from a sufficient number of organizations to satisfy the policy for deploying a chaincode. Because the
approval is distributed within each organization, you can target any peer that belongs to a channel member.

The chaincode definition endorsements by channel members are submitted to the ordering service to be added to a
block and distributed to the channel. The peers on the channel then validate whether a sufficient number of organiza-
tions have approved the chaincode definition. The peer lifecycle chaincode commit command will wait
for the validations from the peer before returning a response.

7.1. Deploying a smart contract to a channel 199

commands/peerlifecycle.html#peer-lifecycle-chaincode-checkcommitreadiness
commands/peerlifecycle.html#peer-lifecycle-chaincode-commit

hyperledger-fabricdocs Documentation, Release master

You can use the peer lifecycle chaincode querycommitted command to confirm that the chaincode definition has been
committed to the channel.

peer lifecycle chaincode querycommitted —-—-channelID mychannel —-name basic —--cafile "$
— {PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/
—msp/tlscacerts/tlsca.example.com-cert.pem"

If the chaincode was successful committed to the channel, the querycommitted command will return the sequence
and version of the chaincode definition:

Committed chaincode definition for chaincode 'basic' on channel 'mychannel':
Version: 1.0, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc,
—Approvals: [OrglMSP: true, Org2MSP: true]

7.1.7 Invoking the chaincode

After the chaincode definition has been committed to a channel, the chaincode will start on the peers joined to the
channel where the chaincode was installed. The asset-transfer (basic) chaincode is now ready to be invoked by client
applications. Use the following command create an initial set of assets on the ledger. Note that the invoke command
needs target a sufficient number of peers to meet chaincode endorsement policy.

peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.
—com —-tls —--cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" -C mychannel -n
—basic ——peerAddresses localhost:7051 —--tlsRootCertFiles "S{PWD}/organizations/
—peerOrganizations/orgl.example.com/peers/peer(0.orgl.example.com/tls/ca.crt" ——
—peerAddresses localhost:9051 --tlsRootCertFiles "S$/{PWD}/organizations/

[

—peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt" —-c '{
—"function":"InitLedger", "Args":[]}"'

If the command is successful, you should be able to a response similar to the following:

2020-02-12 18:22:20.576 EST [chaincodeCmd] chaincodeInvokeOrQuery —-> INFO 001 |
—Chaincode invoke successful. result: status:200

We can use a query function to read the set of cars that were created by the chaincode:

peer chaincode query —-C mychannel -n basic -c¢ '{"Args":["GetAllAssets"]}'

The response to the query should be the following list of assets:

[{"Key":"assetl","Record":{"ID":"assetl", "color":"blue", "size":5, "owner":"Tomoko",
—"appraisedvalue":300}},

{"Key":"asset2", "Record":{"ID":"asset2", "color":"red", "size":5, "owner":"Brad",
—"appraisedvValue":400}},
{"Key":"asset3","Record":{"ID":"asset3","color":"green","size":10, "owner":"Jin Soo",
—"appraisedvalue":500}},

{"Key":"asset4", "Record":{"ID":"asset4d","color":"yellow", "size":10, "owner":"Max",
—"appraisedvalue":600}},

{"Key":"asset5", "Record":{"ID":"asset5", "color":"black", "size":15, "owner":"Adriana",

—"appraisedvalue":700}},
{"Key":"asset6","Record":{"ID":"asset6","color":"white","size":15, "owner":"Michel",
—"appraisedvalue":8001}1}]

200 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-querycommitted

hyperledger-fabricdocs Documentation, Release master

7.1.8 Upgrading a smart contract

You can use the same Fabric chaincode lifecycle process to upgrade a chaincode that has already been deployed to
a channel. Channel members can upgrade a chaincode by installing a new chaincode package and then approving a
chaincode definition with the new package ID, a new chaincode version, and with the sequence number incremented by
one. The new chaincode can be used after the chaincode definition is committed to the channel. This process allows
channel members to coordinate on when a chaincode is upgraded, and ensure that a sufficient number of channel
members are ready to use the new chaincode before it is deployed to the channel.

Channel members can also use the upgrade process to change the chaincode endorsement policy. By approving a
chaincode definition with a new endorsement policy and committing the chaincode definition to the channel, channel
members can change the endorsement policy governing a chaincode without installing a new chaincode package.

To provide a scenario for upgrading the asset-transfer (basic) chaincode that we just deployed, let’s assume that Orgl
and Org2 would like to install a version of the chaincode that is written in another language. They will use the
Fabric chaincode lifecycle to update the chaincode version and ensure that both organizations have installed the new
chaincode before it becomes active on the channel.

We are going to assume that Orgl and Org2 initially installed the GO version of the asset-transfer (basic) chaincode, but
would be more comfortable working with a chaincode written in JavaScript. The first step is to package the JavaScript
version of the asset-transfer (basic) chaincode. If you used the JavaScript instructions to package your chaincode when
you went through the tutorial, you can install new chaincode binaries by following the steps for packaging a chaincode
written in Go or TypeScript.

Issue the following commands from the test-network directory to install the chaincode dependencies.

cd ../asset-transfer-basic/chaincode-javascript
npm install
cd ../../test-network

You can then issue the following commands to package the JavaScript chaincode from the test —network directory.
We will set the environment variables needed to use the peer CLI again in case you closed your terminal.

export PATH=${PWD}/../bin:$PATH

export FABRIC_CFG_PATH=$PWD/../config/

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/orgl.example.
—com/users/Admin@orgl.example.com/msp

peer lifecycle chaincode package basic_2.tar.gz —--path ../asset-transfer-basic/
—chaincode—-javascript/ --lang node —--label basic_2.0

Run the following commands to operate the peer CLI as the Orgl admin:

export CORE_PEER_TLS_ENABLED=true

export CORE_PEER_LOCALMSPID="OrglMSP"

export CORE_PEER_TLS_ROOTCERT_FILE=S${PWD}/organizations/peerOrganizations/orgl.
—example.com/peers/peer0.orgl.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/orgl.example.
—com/users/Admin@orgl .example.com/msp

export CORE_PEER_ADDRESS=localhost:7051

We can now use the following command to install the new chaincode package on the Orgl peer.

’peer lifecycle chaincode install basic_2.tar.gz

The new chaincode package will create a new package ID. We can find the new package ID by querying our peer.

’peer lifecycle chaincode queryinstalled

7.1. Deploying a smart contract to a channel 201

hyperledger-fabricdocs Documentation, Release master

The queryinstalled command will return a list of the chaincode that have been installed on your peer similar to
this output.

Installed chaincodes on peer:

Package ID: basic_1.
—~0:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3e£94008615704007£3, Label: basic_1.0
Package ID: basic_2.
—0:1d559£9£fb3dd879601eel7047658c7e0c84eab732dca7c841102f20e42a9%9e7d4, Label: basic_2.0

You can use the package label to find the package ID of the new chaincode and save it as a new environment variable.
This output is for example only — your package ID will be different, so DO NOT COPY AND PASTE!

export NEW_CC_PACKAGE_ID=basic_2.
—0:1d559f9fb3dd879601eel7047658c7e0c84eab732dca7c841102f20e42a9%e7d4

Orgl can now approve a new chaincode definition:

peer lifecycle chaincode approveformyorg -o localhost:7050 —--
—ordererTLSHostnameOverride orderer.example.com —--channelID mychannel --name basic —--
—version 2.0 —--package-id S$NEW_CC_PACKAGE_ID --sequence 2 —--tls —-cafile "S${PWD}/
—organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
—tlscacerts/tlsca.example.com-cert.pem"

The new chaincode definition uses the package ID of the JavaScript chaincode package and updates the chaincode
version. Because the sequence parameter is used by the Fabric chaincode lifecycle to keep track of chaincode up-
grades, Orgl also needs to increment the sequence number from 1 to 2. You can use the peer lifecycle chaincode
querycommitted command to find the sequence of the chaincode that was last committed to the channel.

We now need to install the chaincode package and approve the chaincode definition as Org2 in order to upgrade the
chaincode. Run the following commands to operate the peer CLI as the Org2 admin:

export CORE_PEER_LOCALMSPID="Org2MSP"

export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
—example.com/peers/peer0.org2.example.com/tls/ca.crt

export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.
—example.com/peers/peer0.org2.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.
—com/users/Admin@Rorg2.example.com/msp

export CORE_PEER_ADDRESS=localhost:9051

We can now use the following command to install the new chaincode package on the Org2 peer.

peer lifecycle chaincode install basic_2.tar.gz

You can now approve the new chaincode definition for Org?2.

peer lifecycle chaincode approveformyorg -o localhost:7050 ——
—ordererTLSHostnameOverride orderer.example.com —--channellID mychannel --name basic —-
—version 2.0 —--package-id S$NEW_CC_PACKAGE_ID --sequence 2 —--tls —--cafile "${PWD}/
—organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/
—tlscacerts/tlsca.example.com-cert.pem"

Use the peer lifecycle chaincode checkcommitreadiness command to check if the chaincode definition with sequence
2 is ready to be committed to the channel:

peer lifecycle chaincode checkcommitreadiness —-channelID mychannel --name basic —-
—version 2.0 --sequence 2 —-tls --cafile "$ /organizations/ordererOrganizations/
—example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"

—-——output json (continues on next page)

202 Chapter 7. Tutorials

commands/peerlifecycle.html#peer-lifecycle-chaincode-querycommitted
commands/peerlifecycle.html#peer-lifecycle-chaincode-querycommitted
commands/peerlifecycle.html#peer-lifecycle-chaincode-checkcommitreadiness

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

The chaincode is ready to be upgraded if the command returns the following JSON:

{
"Approvals": {
"OrglMSP": true,
"Org2MSP": true

The chaincode will be upgraded on the channel after the new chaincode definition is committed. Until then, the
previous chaincode will continue to run on the peers of both organizations. Org2 can use the following command to
upgrade the chaincode:

peer lifecycle chaincode commit -o localhost:7050 —--ordererTLSHostnameOverride
—orderer.example.com —-channelID mychannel —--name basic —--version 2.0 —--sequence 2 —-
—tls —-cafile "$ /organizations/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" --peerAddresses,,
—localhost:7051 --tlsRootCertFiles "$ /organizations/peerOrganizations/orgl.
—example.com/peers/peer0.orgl.example.com/tls/ca.crt" —--peerAddresses localhost:9051
——--tlsRootCertFiles "$ /organizations/peerOrganizations/org2.example.com/peers/
—peer0.org2.example.com/tls/ca.crt"

A successful commit transaction will start the new chaincode right away. If the chaincode definition changed the
endorsement policy, the new policy would be put in effect.

You can use the docker ps command to verify that the new chaincode has started on your peers:

$ docker ps

CONTAINER ID IMAGE -
s COMMAND CREATED STATUS .
—PORTS NAMES

Tof2f1b£f792b dev-peer0.orgl.example.com-basic_2.0-
—572cafdba972a9%6aa3fadf6a944efb6648d363c0bad602£56bc8b3f9%eb66f46C—
—69c9e3e4d44edl8cafdleb8de37a70e2ec54cd49c7dalcd461£fbd5e333de32879b "docker-
—entrypoint.s..." 2 minutes ago Up 2 minutes o
— dev-peer0.orgl.example.com-basic_2.0-
—572cafd6a972a9b6aal3fadf6a944efb6648d363c0bad602£56bc8b3f9%eb66f46C
985e0967c27a dev-peer0.org2.example.com-basic_2.0-
—572cafdba972a9%6aa3fadf6a944efb6648d363c0bad602£56bc8b3f9eb66f46C—
—158e9c6adcb51deal43461£fc4d3580e7df4c74a52b41e69%9a25705¢ce85405d760 "docker—
—entrypoint.s..." 2 minutes ago Up 2 minutes o
— dev-peer0.org2.example.com-basic_2.0-
—572cafd6a972a9b6aal3fadf6a944efb6648d363c0bad602£56bc8b3f9%eb66f46C

31£dd19c3be? hyperledger/fabric-peer:latest o
— "peer node start" About an hour ago Up About an hour o
—0.0.0.0:7051->7051/tcp peer0.orgl.example.com

1b17£f£866fe0 hyperledger/fabric—-peer:latest o
— —
— "peer node start" About an hour ago Up About an hour o
—7051/tcp, 0.0.0.0:9051->9051/tcp peer(.org2.example.com

4cfl170c7ae% hyperledger/fabric-orderer:latest

If you used the ——init-required flag, you need to invoke the Init function before you can use the upgraded
chaincode. Because we did not request the execution of Init, we can test our new JavaScript chaincode by creating a

7.1. Deploying a smart contract to a channel 203

hyperledger-fabricdocs Documentation, Release master

new car:

peer chaincode invoke -o localhost:7050 —--ordererTLSHostnameOverride orderer.example.
—com —--tls —--cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com—cert.pem" -C mychannel -n_
—basic --peerAddresses localhost:7051 —-tlsRootCertFiles "$/{PWD}/organizations/
—peerOrganizations/orgl.example.com/peers/peer(0.orgl.example.com/tls/ca.crt" —-—
—peerAddresses localhost:9051 --tlsRootCertFiles "S$/PWD/}/organizations/
—peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt" —-c '{
—"function":"CreateAsset", "Args": ["asset8", "blue","16", "Kelley","750"]}"

You can query all the cars on the ledger again to see the new car:

peer chaincode query -C mychannel -n basic -c¢ '{"Args":["GetAllAssets"]}'

You should see the following result from the JavaScript chaincode:

[{"Key":"assetl", "Record":{"ID":"assetl","color":"blue","size":5, "owner" :"Tomoko",
—"appraisedvalue":300}},
{"Key":"asset2","Record":{"ID":"asset2","color":"red", "size":5, "owner":"Brad",
—"appraisedvalue":400}},
{"Key":"asset3","Record":{"ID":"asset3","color":"green","size":10, "owner":"Jin Soo",
—"appraisedValue":5001}},

{"Key":"asset4d","Record":{"ID":"asset4d", "color":"yellow","size":10, "owner":"Max",
—"appraisedvalue":600}},

{"Key":"asset5","Record": {"ID":"asset5","color":"black","size":15, "owner":"Adriana",
—"appraisedvalue":700}},

{"Key":"asset6","Record":{"ID":"asset6", "color":"white","size":15, "owner":"Michel",
—"appraisedvalue":800}1},
"Key":"asset8","Record":{"ID":"asset8","color":"blue","size":16, "owner":"Kelley",

—"appraisedvalue":750}1}]

7.1.9 Clean up

When you are finished using the chaincode, you can also use the following commands to remove the Logspout tool.

docker stop logspout
docker rm logspout

You can then bring down the test network by issuing the following command from the test-network directory:

./network.sh down

7.1.10 Next steps

After you write your smart contract and deploy it to a channel, you can use the APIs provided by the Fabric SDKs to
invoke the smart contracts from a client application. This allows end users to interact with the assets on the blockchain
ledger. To get started with the Fabric SDKs, see the Writing Your first application tutorial.

7.1.11 troubleshooting

204 Chapter 7. Tutorials

write_first_app.html

hyperledger-fabricdocs Documentation, Release master

Chaincode not agreed to by this org

Problem: When I try to commit a new chaincode definition to the channel, the peer lifecycle chaincode
commit command fails with the following error:

Error: failed to create signed transaction: proposal response was not successful,
—error code 500, msg failed to invoke backing implementation of

— 'CommitChaincodeDefinition': chaincode definition not agreed to by this org,
— (OrglMSP)
Solution: You can try to vresolve this error by wusing the peer lifecycle chaincode

checkcommitreadiness command to check which channel members have approved the chaincode defini-
tion that you are trying to commit. If any organization used a different value for any parameter of the chaincode
definition, the commit transaction will fail. The peer lifecycle chaincode checkcommitreadiness
will reveal which organizations did not approve the chaincode definition you are trying to commit:

{
"approvals": {
"OrglMsSP": false,
"Org2MSP": true

Invoke failure

Problem: The peer lifecycle chaincode commit transaction is successful, but when I try to invoke the
chaincode for the first time, it fails with the following error:

Error: endorsement failure during invoke. response: status:500 message:"make sure the,
—chaincode asset-transfer (basic) has been successfully defined on channel mychannel

—and try again: chaincode definition for 'asset-transfer (basic)
—chaincode is not installed"

exists, but,

Solution: You may not have set the correct ——package-id when you approved your chaincode definition. As a
result, the chaincode definition that was committed to the channel was not associated with the chaincode package you
installed and the chaincode was not started on your peers. If you are running a docker based network, you can use the
docker ps command to check if your chaincode is running:

docker ps

CONTAINER ID IMAGE COMMAND CREATED

— STATUS PORTS NAMES

7felaelab9fa hyperledger/fabric-orderer:latest "orderer" 5 minutes,,
—ago Up 4 minutes 0.0.0.0:7050->7050/tcp orderer.example.com
2b9c684bd07e hyperledger/fabric-peer:latest "peer node start" 5 minutes_
—ago Up 4 minutes 0.0.0.0:7051->7051/tcp peerO.orgl.example.
—Ccom

39a3e41b2573 hyperledger/fabric-peer:latest "peer node start" 5 minutes,,
—ago Up 4 minutes 7051/tcp, 0.0.0.0:9051->9051/tcp peer(0.org2.example.
—Ccom

If you do not see any chaincode containers listed, use the peer lifecycle chaincode approveformyorg
command approve a chaincode definition with the correct package ID.

7.1. Deploying a smart contract to a channel 205

hyperledger-fabricdocs Documentation, Release master

7.1.12 Endorsement policy failure

Problem: When I try to commit the chaincode definition to the channel, the transaction fails with the following error:

2020-04-07 20:08:23.306 EDT [chaincodeCmd] ClientWait -> INFO 001 txid
—[5£569e50ae58efa6261c4ad93180d49%9ac85ec29a07b58£576405b826a8213aeb] committed with
—status (ENDORSEMENT_POLICY_FAILURE) at localhost:7051

Error: transaction invalidated with status (ENDORSEMENT_POLICY_ FAILURE)

Solution: This error is a result of the commit transaction not gathering enough endorsements to meet the Lifecycle
endorsement policy. This problem could be a result of your transaction not targeting a sufficient number of peers to
meet the policy. This could also be the result of some of the peer organizations not including the Endorsement :
signature policy referenced by the default /Channel/Application/Endorsement policy intheir configtx.
yaml file:

Readers:

Type: Signature

Rule: "OR('Org2MSP.admin', 'Org2MSP.peer', 'Org2MSP.client')"
Writers:

Type: Signature

Rule: "OR('Org2MSP.admin', 'Org2MSP.client')"
Admins:

Type: Signature

Rule: "OR('Org2MSP.admin')"
Endorsement:

Type: Signature

Rule: "OR('Org2MSP.peer')"

When you enable the Fabric chaincode lifecycle, you also need to use the new Fabric 2.0 channel policies in addition to
upgrading your channel to the V2_0 capability. Your channel needs to include the new /Channel/Application/
LifecycleEndorsement and /Channel/Application/Endorsement policies:

Policies:
Readers:
Type: ImplicitMeta
Rule: "ANY Readers"
Writers:
Type: ImplicitMeta
Rule: "ANY Writers"
Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"
LifecycleEndorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement”
Endorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement”

If you do not include the new channel policies in the channel configuration, you will get the following error when you
approve a chaincode definition for your organization:

Error: proposal failed with status: 500 - failed to invoke backing implementation of
— 'ApproveChaincodeDefinitionForMyOrg': could not set defaults for chaincode
—definition in channel mychannel: policy '/Channel/Application/Endorsement' must be,
—~defined for channel 'mychannel' before chaincode operations can be attempted

206 Chapter 7. Tutorials

enable_cc_lifecycle.html

hyperledger-fabricdocs Documentation, Release master

7.2 Writing Your First Application

Note: If you’re not yet familiar with the fundamental architecture of a Fabric network, you may want to visit the Key
Concepts section prior to continuing.

It is also worth noting that this tutorial serves as an introduction to Fabric applications and uses simple smart contracts
and applications. For a more in-depth look at Fabric applications and smart contracts, check out our Developing
Applications section or the Commercial paper tutorial.

This tutorial provides an introduction to how Fabric applications interact with deployed blockchain networks. The
tutorial uses sample programs built using the Fabric SDKs — described in detail in the Application topic — to invoke
a smart contract which queries and updates the ledger with the smart contract API — described in detail in Smart
Contract Processing. We will also use our sample programs and a deployed Certificate Authority to generate the
X.509 certificates that an application needs to interact with a permissioned blockchain.

About Asset Transfer

This Asset Transfer (basic) sample demonstrates how to initialize a ledger with assets, query those assets, create a
new asset, query a single asset based on an asset ID, update an existing asset, and transfer an asset to a new owner. It
involves the following two components:

1. Sample application: which makes calls to the blockchain network, invoking transactions implemented
in the chaincode (smart contract). The application is located in the following fabric-samples direc-
tory:

’assetftransferfbasic/applicationfjavascript

2. Smart contract itself, implementing the transactions that involve interactions with the ledger. The smart
contract (chaincode) is located in the following fabric-samples directory:

’assetftransferfbasic/chaincodef(javascript, java, go, typescript) ‘

Please note that for the purposes of this tutorial, the terms chaincode and smart contract are used interchangeably. For
this example, we will be using the javascript chaincode.

We’ll go through three principle steps:

1. Setting up a development environment. Our application needs a network to interact with, so we’ll
deploy a basic network for our smart contracts and application.

Blockchain Network

Application Developer

Identity
NI
eeoo — v —_— :
A= v :
o Run smart contracts v \ 4
Application
Receive ledger updates
ledger

7.2. Writing Your First Application 207

hyperledger-fabricdocs Documentation, Release master

2. Explore a sample smart contract. We’ll inspect the sample assetTransfer (javascript) smart contract
to learn about the transactions within it, and how they are used by an application to query and update the
ledger.

3. Interact with the smart contract with a sample application. Our application will use the assetTrans-
fer smart contract to create, query, and update assets on the ledger. We’ll get into the code of the app
and the transactions they create, including initializing the ledger with assets, querying an asset, querying
arange of assets, creating a new asset, and transferring an asset to a new owner.

After completing this tutorial you should have a basic understanding of how Fabric applications and smart contracts
work together to manage data on the distributed ledger of a blockchain network.

7.2.1 Before you begin
In addition to the standard Prerequisites for Fabric, this tutorial leverages the Hyperledger Fabric SDK for Node.js.
See the Node.js SDK README for a up to date list of prerequisites.
* If you are using macOS, complete the following steps:
1. Install Homebrew.
2. Check the Node SDK prerequisites to find out what level of Node to install.

3. Run brew install node to download the latest version of node or choose a specific version, for
example: brew install node@10 according to what is supported in the prerequisites.

4. Run npm install.

¢ If you are on Windows, you can install the windows-build-tools with npm which installs all required compilers
and tooling by running the following command:

’npm install --global windows-build-tools

e If you are on Linux, you need to install Python v2.7, make, and a C/C++ compiler toolchain such as GCC. You
can run the following command to install the other tools:

’sudo apt install build-essential

7.2.2 Set up the blockchain network

If you’ve already run through Using the Fabric test network tutorial and have a network up and running, this tutorial
will bring down your running network before bringing up a new one.

Launch the network

Note: This tutorial demonstrates the JavaScript versions of the Asset Transfer smart contract and application, but the
fabric-samples repository also contains Go, Java and TypeScript versions of this sample smart contract. To try
the Go, Java or TypeScript versions, change the javascript argument for . /network.sh deployCC -ccl
javascript below to either go, java or typescript and follow the instructions written to the terminal. You
may use any chaincode language sample with the javascript application sample (e.g javascript application calling go
chaincode functions or javascript application calling typescript chaincode functions, etc.)

Navigate to the test —network subdirectory within your local clone of the fabric—samples repository.

208 Chapter 7. Tutorials

https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://brew.sh/
https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://github.com/felixrieseberg/windows-build-tools#readme
https://www.python.org/download/releases/2.7/
https://www.gnu.org/software/make/
https://gcc.gnu.org/

hyperledger-fabricdocs Documentation, Release master

’cd fabric-samples/test-network

If you already have a test network running, bring it down to ensure the environment is clean.

’./network.sh down

Launch the Fabric test network using the network . sh shell script.

’./network.sh up createChannel -c mychannel -ca

This command will deploy the Fabric test network with two peers, an ordering service, and three certificate authorities
(Orderer, Orgl, Org2). Instead of using the cryptogen tool, we bring up the test network using Certificate Authorities,
hence the —ca flag. Additionally, the org admin user registration is bootstrapped when the Certificate Authority is
started. In a later step, we will show how the sample application completes the admin enrollment.

Next, let’s deploy the chaincode by calling the . /network . sh script with the chaincode name and language options.

./network.sh deployCC -ccn basic -ccp ../asset-transfer-basic/chaincode-javascript/ -
—ccl javascript

Note: Behind the scenes, this script uses the chaincode lifecycle to package, install, query installed chaincode,
approve chaincode for both Orgl and Org2, and finally commit the chaincode.

If the chaincode is successfully deployed, the end of the output in your terminal should look similar to below:

Committed chaincode definition for chaincode 'basic' on channel 'mychannel':
Version: 1.0, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc, .,
—Approvals: [OrglMSP: true, Org2MSP: true]

===================== Query chaincode definition successful on peer0.org2 on channel
— 'mychannel' =====================

Sample application
Next, let’s prepare the sample Asset Transfer Javascript application that will be used to interact with the deployed
chaincode.
* JavaScript application
Note that the sample application is also available in Go and Java at the links below:
* Go application
e Java application

Open a new terminal, and navigate to the application-javascript folder.

’cd asset-transfer-basic/application-javascript

This directory contains sample programs that were developed using the Fabric SDK for Node.js. Run the following
command to install the application dependencies. It may take up to a minute to complete:

’npm install

7.2. Writing Your First Application 209

https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/application-javascript
https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/application-go
https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/application-java

hyperledger-fabricdocs Documentation, Release master

This process is installing the key application dependencies defined in the application’s package . json. The most
important of which is the fabric-network Node.js module; it enables an application to use identities, wallets,
and gateways to connect to channels, submit transactions, and wait for notifications. This tutorial also uses the
fabric-ca-client module to enroll users with their respective certificate authorities, generating a valid iden-
tity which is then used by the fabric-network module to interact with the blockchain network.

Once npm install completes, everything is in place to run the application. Let’s take a look at the sample
JavaScript application files we will be using in this tutorial. Run the following command to list the files in this
directory:

i

You should see the following:

’app.js node_modules package. json package-lock. json

Note: The first part of the following section involves communication with the Certificate Authority. You may find
it useful to stream the CA logs when running the upcoming programs by opening a new terminal shell and running
docker logs —-f ca_orgl.

When we started the Fabric test network back in the first step, an admin user — literally called admin — was created
as the registrar for the Certificate Authority (CA). Our first step is to generate the private key, public key, and X.509
certificate for admin by having the application call the enrol1Admin . This process uses a Certificate Signing
Request (CSR) — the private and public key are first generated locally and the public key is then sent to the CA which
returns an encoded certificate for use by the application. These credentials are then stored in the wallet, allowing us to
act as an administrator for the CA.

Let’s run the application and then step through each of the interactions with the smart contract functions. From the
asset-transfer-basic/application-javascript directory, run the following command:

node app.Jjs

7.2.3 First, the application enrolls the admin user

Note: It is important to note that enrolling the admin and registering the app user are interactions that take place
between the application and the Certificate Authority, not between the application and the chaincode. If you examine
the chaincode in asset-transfer-basic/chaincode-javascript/1lib you will find that the chaincode
does not contain any functionality that supports enrolling the admin or registering the user.

In the sample application code below, you will see that after getting reference to the common connection profile path,
making sure the connection profile exists, and specifying where to create the wallet, enrol1Admin () is executed
and the admin credentials are generated from the Certificate Authority.

async function main() {
try {
// build an in memory object with the network configuration (also known as a_
—connection profile)
const ccp = buildCCP();

// build an instance of the fabric ca services client based on
// the information in the network configuration
const caClient = buildCAClient (FabricCAServices, ccp);

(continues on next page)

210 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

// setup the wallet to hold the credentials of the application user
const wallet = await buildWallet (Wallets, walletPath);

// in a real application this would be done on an administrative flow, and only,
—once
await enrollAdmin(caClient, wallet);

This command stores the CA administrator’s credentials in the wallet directory. You can find administrator’s cer-
tificate and private key in the wallet/admin. id file.

Note: If you decide to start over by taking down the network and bringing it back up again, you will have to delete the
wallet folder and its identities prior to re-running the javascript application or you will get an error. This happens
because the Certificate Authority and its database are taken down when the test-network is taken down but the original
wallet still remains in the application-javascript directory so it must be deleted. When you re-run the sample javascript
application, a new wallet and credentials will be generated.

If you scroll back up to the beginning of the output in your terminal, it should be similar to below:

Wallet path: /Users/<your_username>/fabric-samples/asset-transfer-basic/application-
—Jjavascript/wallet
Successfully enrolled admin user and imported it into the wallet

Because the admin registration step is bootstrapped when the Certificate Authority is started, we only need to enroll
the admin.

Note: Since the Fabric CA interactions are common across the samples, enrollAdmin() and the other CA related
functions are included in the fabric-samples/test—application/Jjavascript/CAUtil. js common
utility.

As for the app user, we need the application to register and enroll the user in the next step.

7.2.4 Second, the application registers and enrolls an application user

Now that we have the administrator’s credentials in a wallet, the application uses the admin user to register and enroll
an app user which will be used to interact with the blockchain network. The section of the application code is shown
below.

// in a real application this would be done only when a new user was required to be
—added

// and would be part of an administrative flow

await registerUser (caClient, wallet, userId, 'orgl.departmentl');

Similar to the admin enrollment, this function uses a CSR to register and enroll appUser and store its credentials
alongside those of admin in the wallet. We now have identities for two separate users — admin and appUser —
that can be used by our application.

Scrolling further down in your terminal output, you should see confirmation of the app user registration similar to this:

Successfully registered and enrolled user appUser and imported it into the wallet

7.2. Writing Your First Application 211

hyperledger-fabricdocs Documentation, Release master

7.2.5 Third, the sample application prepares a connection to the channel and smart
contract

In the prior steps, the application generated the admin and app user credentials and placed them in the wallet. If the
credentials exist and have the correct permissions attributes associated with them, the sample application user will be
able to call chaincode functions after getting reference to the channel name and contract name.

Note: Our connection configuration specifies only the peer from your own Org. We tell node client sdk to use the
service discovery (running on the peer), which fetches other peers that are currently online, metadata like relevant
endorsement policies and any static information it would have otherwise needed to communicate with the rest of the
nodes. The asLocalhost set to true tells it to connect as localhost, since our client is running on same network
as the other fabric nodes. In deployments where you are not running the client on the same network as the other fabric
nodes, the asLocalhost option would be set to false.

You will notice that in the following lines of application code, the application is getting reference to the Contract using
the contract name and channel name via Gateway:

// Create a new gateway instance for interacting with the fabric network.

// In a real application this would be done as the backend server session is setup for
// a user that has been verified.

const gateway = new Gateway();

try {
// setup the gateway instance
// The user will now be able to create connections to the fabric network and be
—able to
// submit transactions and query. All transactions submitted by this gateway will be
// signed by this user using the credentials stored in the wallet.
await gateway.connect (ccp, {
wallet,
identity: userld,
discovery: {enabled: true, asLocalhost: true} // using asLocalhost as this_
—gateway is using a fabric network deployed locally
1)

// Build a network instance based on the channel where the smart contract is_
—deployed
const network = await gateway.getNetwork (channelName) ;

// Get the contract from the network.
const contract = network.getContract (chaincodeName) ;

When a chaincode package includes multiple smart contracts, on the getContract() API you can specify both the name
of the chaincode package and a specific smart contract to target. For example:

const contract = await network.getContract ('chaincodeName', 'smartContractName');

7.2.6 Fourth, the application initializes the ledger with some sample data

Now that we are at the point where we are actually having the sample application submit transactions, let’s go through
them in sequence. The application code snippets and invoked chaincode snippets are provided for each called function,
as well as the terminal output.

212 Chapter 7. Tutorials

https://hyperledger.github.io/fabric-sdk-node/release-2.2/module-fabric-network.Network.html#getContract

hyperledger-fabricdocs Documentation, Release master

The submitTransaction() function is used to invoke the chaincode InitLedger function to populate the ledger
with some sample data. Under the covers, the submitTransaction() function will use service discovery to find a set of
required endorsing peers for the chaincode, invoke the chaincode on the required number of peers, gather the chaincode
endorsed results from those peers, and finally submit the transaction to the ordering service.

Sample application ' InitLedger"' call

// Initialize a set of asset data on the channel using the chaincode 'InitLedger'
—function.

// This type of transaction would only be run once by an application the first time,,
—1it was started after it

// deployed the first time. Any updates to the chaincode deployed later would likely,
—not need to run

// an "init" type function.

console.log('\n--> Submit Transaction: InitLedger, function creates the initial set_
—0f assets on the ledger');

await contract.submitTransaction('InitLedger');

console.log('xxx Result: committed');

Chaincode 'InitLedger' function

async InitLedger (ctx) {
const assets = [
{

ID: 'assetl',
Color: 'blue',
Size: 5,
Owner: 'Tomoko',
AppraisedvValue: 300,

ID: 'asset2',

Color: 'red',

Size: 5,

Owner: 'Brad',
AppraisedvValue: 400,

ID: 'asset3',

Color: 'green',
Size: 10,

Owner: 'Jin Soo',
AppraisedvValue: 500,

ID: 'asset4d',

Color: 'yellow',
Size: 10,

Owner: 'Max',
AppraisedvValue: 600,

ID: 'assetb',

Color: 'black',

Size: 15,

Owner: 'Adriana',

Appraisedvalue: 700,
}I

(continues on next page)

7.2. Writing Your First Application 213

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

ID: 'asseto6',

Color: 'white',

Size: 15,

Owner: 'Michel',

Appraisedvalue: 800,
}I

for (const asset of assets) {
asset.docType = 'asset';
await ctx.stub.putState(asset.ID, Buffer.from(JSON.stringify(asset)));
console.info ('Asset ${asset.ID} initialized’);

The terminal output entry should look similar to below:

Submit Transaction: InitLedger, function creates the initial set of assets on the
—ledger

7.2.7 Fifth, the application invokes each of the chaincode functions

First, a word about querying the ledger.

Each peer in a blockchain network hosts a copy of the ledger. An application program can view the most recent data
from the ledger using read-only invocations of a smart contract running on your peers called a query.

Here is a simplified representation of how a query works:

___________ Blockchain Network

Network N __ _liu_er_y_ -
o —
Y Peer o —

[}
1
— [
Run query N
Application Smart contract I:H:H:H:H:l

Return query results \

The most common queries involve the current values of data in the ledger — its world state. The world state is
represented as a set of key-value pairs, and applications can query data for a single key or multiple keys. Moreover,
you can use complex queries to read the data on the ledger when you use CouchDB as your state database and model

214 Chapter 7. Tutorials

./ledger/ledger.html
./ledger/ledger.html#world-state

hyperledger-fabricdocs Documentation, Release master

your data in JSON. This can be very helpful when looking for all assets that match certain keywords with particular
values; all assets with a particular owner, for example.

Below, the sample application is just getting all the assets that we populated in the prior step when we initialized the
ledger with data. The evaluateTransaction() function is used when you’d like to query a single peer, without submitting
a transaction to the ordering service.

Sample application 'GetAl1Assets"' call

// Let's try a query type operation (function).

// This will be sent to just one peer and the results will be shown.
console.log('\n-—> Evaluate Transaction: GetAllAssets, function returns all the_
—current assets on the ledger');

let result = await contract.evaluateTransaction('GetAllAssets');
console.log (" *** Result: ${prettyJSONString(result.toString())}");

Chaincode 'GetAllAssets' function

// GetAllAssets returns all assets found in the world state.
async GetAllAssets (ctx) |

const allResults = [];

// range query with empty string for startKey and endKey does an open-ended,
—query of all assets in the chaincode namespace.

const iterator = await ctx.stub.getStateByRange('', '');
let result = await iterator.next ();
while (!result.done) {

const strValue = Buffer.from(result.value.value.toString()).toString('utf8');
let record;
try {
record = JSON.parse (strvValue);
} catch (err) {
console.log(err);
record = strValue;
}
allResults.push ({ Key: result.value.key, Record: record });
result = await iterator.next ();
t
return JSON.stringify(allResults);

The terminal output should look like this:

Evaluate Transaction: GetAllAssets, function returns all the current assets on the

—ledger
Result: [
{
"Key": "assetl",
"Record": {
"ID": "assetl",
"Color": "blue",
"Size": 5,
"Owner": "Tomoko",
"AppraisedvValue": 300,
"docType": "asset"
}
}I
{
"Key": "asset2",

(continues on next page)

7.2. Writing Your First Application 215

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"Record": {
"ID": "asset2",
"Color": "red",
"Size": 5,
"Owner": "Brad",
"AppraisedValue": 400,
"docType": "asset"

"Key": "asset3",
"Record": {
"ID": "asset3",
"Color": "green",
"Size": 10,
"Owner": "Jin Soo",
"AppraisedvValue": 500,
"docType": "asset"

"Key": "asset4d",
"Record": {
"ID": "asset4d",
"Color": "yellow",
"Size": 10,
"Owner": "Max",
"AppraisedvValue": 600,
"docType": "asset"

"Key": "assetbH",
"Record": {
"ID": "assetb",
"Color": "black",
"Size": 15,
"Owner": "Adriana",
"Appraisedvalue": 700,
"docType": "asset"

"Key": "asseto6",
"Record": {
"ID": "asseto",
"Color": "white",
"Size": 15,
"Owner": "Michel",
"AppraisedValue": 800,
"docType": "asset"

Next, the sample application submits a transaction to create ‘assetl3’.

Sample application 'CreateAsset ' call

216

Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

// Now let's try to submit a transaction.

// This will be sent to both peers and if both peers endorse the transaction, the_
—endorsed proposal will be sent

// to the orderer to be committed by each of the peer's to the channel ledger.
console.log('\n-—-> Submit Transaction: CreateAsset, creates new asset with ID, color,
—owner, size, and appraisedValue arguments');

await contract.submitTransaction('CreateAsset', 'assetl3', 'yellow', '5', 'Tom', '1300
")

console.log('xxx Result: committed');

Chaincode 'CreateAsset ' function

// CreateAsset issues a new asset to the world state with given details.
async CreateAsset (ctx, id, color, size, owner, appraisedvValue) {
const asset = {
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedvalue,
}i
return ctx.stub.putState(id, Buffer.from(JSON.stringify (asset)));

Terminal output:

Submit Transaction: CreateAsset, creates new asset with ID, color, owner, size, and
—appraisedValue arguments

Note: In the application and chaincode snippets above, it is important to note that the sample application submits
the 'CreateAsset ' transaction with the same type and number of arguments the chaincode is expecting, and in
the correct sequence. In this case, the transaction name and correctly sequenced arguments are: 'CreateAsset’,
'assetl3', 'yellow', '5', "Tom', '1300"' because the corresponding chaincode CreateAsset is expecting
the correct sequence and type of arguments that define the asset object: sequence: ID, Color, Size, Owner, and
AppraisedValue

type: ID (string), Color (string), Size (int), Owner (string), Appraised Value (int).

The sample application then evaluates a query for ‘asset13’.

Sample application 'ReadAsset ' call

console.log('\n-—> Evaluate Transaction: ReadAsset, function returns an_
—~asset with a given assetID');

result = await contract.evaluateTransaction ('ReadAsset', 'assetl3');
console.log (" *** Result: ${prettyJSONString(result.toString())}");

Chaincode 'ReadAsset ' function

// ReadAsset returns the asset stored in the world state with given id.
async ReadAsset (ctx, id) {
const assetJSON = await ctx.stub.getState(id); // get the asset from
—chaincode state
if (!'assetJSON || assetJSON.length === 0) {
throw new Error (' The asset ${id} does not exist’);

(continues on next page)

7.2. Writing Your First Application 217

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

return assetJSON.toString();

Terminal output:

Evaluate Transaction: ReadAsset, function returns an asset with a given,

—assetID

Result: {
"ID": "assetl3",
"Color": "yellow",
"Size": "5",
"Owner": "Tom",
"AppraisedvValue": "1300"

In the next part of the sequence, the sample application evaluates to see if asset 1 exists, which will return a boolean
value of true, because we populated the ledger with asset1 when we initialized the ledger with assets. You may
recall that the original appraised value of asset1 was 300. The application then submits a transaction to update
assetl with a new appraised value, and then immediately evaluates to read asset1 from the ledger to show the
new appraised value of 350.

Sample application 'AssetExists’', 'UpdateAsset ', and 'ReadAsset ' calls

console.log('\n--> Evaluate Transaction: AssetExists, function returns "true" if an
—asset with given assetID exist');

result = await contract.evaluateTransaction('AssetExists', 'assetl');
console.log (" +xx* Result: ${prettyJSONString(result.toString())}");

console.log('\n-—> Submit Transaction: UpdateAsset assetl, change the appraisedvValue_,
—to 350");

await contract.submitTransaction ('UpdateAsset', 'assetl', 'blue', '5', 'Tomoko', '350
=");

console.log ('#*% Result: committed');

console.log('\n-—> Evaluate Transaction: ReadAsset, function returns "assetl"
—attributes');

result = await contract.evaluateTransaction ('ReadAsset', 'assetl');
console.log (" *** Result: ${prettyJSONString(result.toString())}");

Chaincode 'AssetExists', 'UpdateAsset', and 'ReadAsset' functions

// AssetExists returns true when asset with given ID exists in world state.
async AssetExists(ctx, id) {
const assetJSON = await ctx.stub.getState(id);
return assetJSON && assetJSON.length > 0;
}
// UpdateAsset updates an existing asset in the world state with provided parameters.
async UpdateAsset (ctx, id, color, size, owner, appraisedvValue) {
const exists = await this.AssetExists(ctx, id);
if ('exists) {
throw new Error (The asset ${id} does not exist’);

// overwriting original asset with new asset
const updatedAsset = {

ID: id,

Color: color,

(continues on next page)

218 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Size: size,
Owner: owner,
AppraisedValue: appraisedvValue,
}i
return ctx.stub.putState(id, Buffer.from(JSON.stringify (updatedAsset)));
}
// ReadAsset returns the asset stored in the world state with given id.
async ReadAsset (ctx, id) {
const assetJSON = await ctx.stub.getState(id); // get the asset from chaincode
—state
if ('assetJSON || assetJSON.length === 0) {
throw new Error (' The asset ${id} does not exist’);
}
return assetJSON.toString();

Terminal Output:

Evaluate Transaction: AssetExists, function returns "true" if an asset with given,
—assetID exist
Result: true

Submit Transaction: UpdateAsset assetl, change the appraisedvValue to 350

Evaluate Transaction: ReadAsset, function returns "assetl" attributes
Result: {

"ID": "assetl",

"Color": "blue",

"Size": "5",

"Owner": "Tomoko",

"AppraisedValue": "350"

In this part of the sequence, the sample application attempts to submit an 'UpdateAsset ' transaction for an asset
that we know does not exist (asset 70). We expect that we will get an error because you cannot update an asset that
does not exist, which is why it is a good idea to check if an asset exists prior to attempting an asset update or deletion.

Sample application 'UpdateAsset ' call

try {

// How about we try a transactions where the executing chaincode throws an error

// Notice how the submitTransaction will throw an error containing the error thrown
—by the chaincode

console.log('\n--> Submit Transaction: UpdateAsset asset70, asset70 does not exist
—and should return an error');

await contract.submitTransaction ('UpdateAsset', 'asset70', 'blue', '5', 'Tomoko',
—"'300");

console.log('"*«*xxx*xxx+x FAILED to return an error');
} catch (error) {

console.log (" xx* Successfully caught the error: \n S{error}’);

Chaincode 'UpdateAsset ' function

// UpdateAsset updates an existing asset in the world state with provided parameters.
async UpdateAsset (ctx, id, color, size, owner, appraisedvValue) {
const exists = await this.AssetExists(ctx, id);

(continues on next page)

7.2. Writing Your First Application 219

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

if (l!exists) {
throw new Error (' The asset ${id} does not exist’);

// overwriting original asset with new asset
const updatedAsset = {
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedvValue,
}i
return ctx.stub.putState(id, Buffer.from(JSON.stringify (updatedAsset)));

Terminal output:

Submit Transaction: UpdateAsset asset70
2020-08-02T11:12:12.322Z — error: [Transaction]: Error: No valid responses from any
—peers. Errors:
peer=peer(.orgl.example.com: 7051, status=500, message=error in simulation:
—transaction returned with failure: Error: The asset asset70 does not exist
peer=peer(0.org2.example.com:9051, status=500, message=error in simulation:
—transaction returned with failure: Error: The asset asset70 does not exist
Expected an error on UpdateAsset of non-existing Asset: Error: No valid responses,
—from any peers. Errors:
peer=peer(.orgl.example.com: 7051, status=500, message=error in simulation:
—transaction returned with failure: Error: The asset asset70 does not exist
peer=peer(0.org2.example.com:9051, status=500, message=error in simulation:
—transaction returned with failure: Error: The asset asset70 does not exist

In this final part of the sample application transaction sequence, the application submits a transaction to transfer an
existing asset to a new owner and then reads the asset back from the ledger to display the new owner Tom.

Sample application ' TransferAsset ', and 'ReadAsset ' calls

console.log('\n--> Submit Transaction: TransferAsset assetl, transfer to new owner of
—Tom'") ;

await contract.submitTransaction('TransferAsset', 'assetl', 'Tom');

console.log ('++% Result: committed');

console.log('\n-—> Evaluate Transaction: ReadAsset, function returns "assetl"
—attributes');

result = await contract.evaluateTransaction ('ReadAsset', 'assetl');
console.log (" *+x* Result: ${prettyJSONString(result.toString())}");

Chaincode 'TransferAsset', and 'ReadAsset ' functions

// TransferAsset updates the owner field of asset with given id in the world state.
async TransferAsset (ctx, id, newOwner) {
const assetString = await this.ReadAsset (ctx, id);
const asset = JSON.parse (assetString);
asset.Owner = newOwner;
return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
}
// ReadAsset returns the asset stored in the world state with given id.
async ReadAsset (ctx, id) {

(continues on next page)

220 Chapter 7. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

const assetJSON = await ctx.stub.getState(id); // get the asset from chaincode
—state
if (!'assetJSON || assetJSON.length === 0) {
throw new Error (" The asset ${id} does not exist’);
}
return assetJSON.toString();

Terminal output:

Submit Transaction: TransferAsset assetl, transfer to new owner of Tom
Evaluate Transaction: ReadAsset, function returns "assetl" attributes
Result: {

"ID": "assetl",

"Color": "blue",

"Size": "5",

"Owner": "Tom",

"AppraisedValue": "350"

7.2.8 A closer look

Let’s take a closer look at how the sample javascript application uses the APIs provided by the Fabric Node SDK
to interact with our Fabric network. Use an editor (e.g. atom or visual studio) to open app. js located in the
asset-transfer-basic/application-javascript directory.

The application starts by bringing in scope two key classes from the fabric-network module; Wallets and
Gateway. These classes will be used to locate the appUser identity in the wallet, and use it to connect to the
network:

const { Gateway, Wallets } = require('fabric-network'");

First, the program sets up the gateway connection with the userld stored in the wallet and specifies discovery options.

// setup the gateway instance
// The user will now be able to create connections to the fabric network and be able
—to
// submit transactions and query. All transactions submitted by this gateway will be
// signed by this user using the credentials stored in the wallet.
await gateway.connect (ccp, {

wallet,

identity: userId,

discovery: {enabled: true, asLocalhost: true} // using asLocalhost as this gateway,,
—~is using a fabric network deployed locally
1)

Note at the top of the sample application code we require external utility files to build the CAClient, registerUser, enrol-
1Admin, buildCCP (common connection profile), and buildWallet. These utility programs are located in AppUtil.
jsinthe test—application/javascript directory.

In AppUtil. js, ccpPath describes the path to the connection profile that our application will use to connect to
our network. The connection profile was loaded from inside the fabric-samples/test-network directory
and parsed as a JSON file:

7.2. Writing Your First Application 221

https://hyperledger.github.io/fabric-sdk-node/

hyperledger-fabricdocs Documentation, Release master

const ccpPath = path.resolve(__dirname, '..', '..', 'test-network',6 'organizations',
— 'peerOrganizations', 'orgl.example.com', 'connection-orgl.json');

If you’d like to understand more about the structure of a connection profile, and how it defines the network, check out
the connection profile topic.

A network can be divided into multiple channels, and the next important line of code connects the application to a
particular channel within the network, mychannel, where our smart contract was deployed. Note that we assigned
constants near the top of the sample application to account for the channel name and the contract name:

const channelName = 'mychannel';
const chaincodeName = 'basic';

const network = await gateway.getNetwork (channelName) ;

Within this channel, we can access the asset-transfer (‘basic’) smart contract to interact with the ledger:

’const contract = network.getContract (chaincodeName) ;

Within asset-transfer (‘basic’) there are many different transactions, and our application initially uses the
InitLedger transaction to populate the ledger world state with data:

’await contract.submitTransaction('InitLedger');

The evaluateTransaction method represents one of the simplest interactions with a smart contract in
blockchain network. It simply picks a peer defined in the connection profile and sends the request to it, where it
is evaluated. The smart contract queries the assets on the peer’s copy of the ledger and returns the result to the
application. This interaction does not result in an update of the ledger.

submitTransaction is much more sophisticated than evaluateTransaction. Rather than interacting with
a single peer, the SDK will send the submitTransaction proposal to every required organization’s peer in the
blockchain network based on the chaincode’s endorsement policy. Each of these peers will execute the requested smart
contract using this proposal, to generate a transaction response which it endorses (signs) and returns to the SDK. The
SDK collects all the endorsed transaction responses into a single transaction, which it then submits to the orderer. The
orderer collects and sequences transactions from various application clients into a block of transactions. These blocks
are distributed to every peer in the network, where every transaction is validated and committed. Finally, the SDK is
notified via an event, allowing it to return control to the application.

Note: submitTransaction includes an event listener that checks to make sure the transaction has been val-
idated and committed to the ledger. Applications should either utilize a commit listener, or leverage an API like
submitTransaction that does this for you. Without doing this, your transaction may not have been successfully
ordered, validated, and committed to the ledger.

submitTransaction does all this for the application! The process by which the application, smart contract, peers
and ordering service work together to keep the ledger consistent across the network is called consensus, and it is
explained in detail in this section.

7.2.9 Updating the ledger

From an application perspective, updating the ledger is simple. An application submits a transaction to the blockchain
network, and when it has been validated and committed, the application receives a notification that the transaction
has been successful. Behind the scenes, this involves the process of consensus whereby the different components of
the blockchain network work together to ensure that every proposed update to the ledger is valid and performed in an
agreed and consistent order.

222 Chapter 7. Tutorials

./developapps/connectionprofile.html
./peers/peers.html

hyperledger-fabricdocs Documentation, Release master

Network
Peer

Net k

etwor .D Blockchain Network
Peer e

,C] Smart contract

/
/
/

/ f—
! v

f —

Ordering
g Service

update :

1
o submit transaction

notify transaction committed ledger

Network
Peer

7.2.10 The asset-transfer (‘basic’) smart contract

The smart contract sample is available in the following languages:
* Golang
* Java
* JavaScript

* Typescript

7.2.11 Clean up

When you are finished using the asset-transfer sample, you can bring down the test network using network.sh
script.

./network.sh down

This command will bring down the CAs, peers, and ordering node of the network that we created. Note that all of the
data on the ledger will be lost. If you want to go through the tutorial again, you will start from a clean initial state.

7.2.12 Summary

Now that we’ve seen how the sample application and chaincode are written and how they interact with each other,
you should have a pretty good sense of how applications interact with a blockchain network using a smart contract to
query or update the ledger. You’ve seen the basics of the roles smart contracts, APIs, and the SDK play in queries and

updates and you should have a feel for how different kinds of applications could be used to perform other business
tasks and operations.

7.2. Writing Your First Application 223

https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/chaincode-go
https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/chaincode-java
https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/chaincode-javascript
https://github.com/hyperledger/fabric-samples/blob/master/asset-transfer-basic/chaincode-typescript

hyperledger-fabricdocs Documentation, Release master

7.2.13 Additional resources

As we said in the introduction, we have a whole section on Developing Applications that includes in-depth information
on smart contracts, process and data design, a tutorial using a more in-depth Commercial Paper tutorial and a large
amount of other material relating to the development of applications.

7.3 Commercial paper tutorial

Audience: Architects, application and smart contract developers, administrators

This tutorial will show you how to install and use a commercial paper sample application and smart contract. It is a
task-oriented topic, so it emphasizes procedures above concepts. When you’d like to understand the concepts in more
detail, you can read the Developing Applications topic.

MagnetoCorp PaperNet DigiBank

Redeem

Isabella Balaji

In this tutorial two organizations, MagnetoCorp and DigiBank, trade commercial paper with each other using Paper-
Net, a Hyperledger Fabric blockchain network.

Once you’ve set up the test network, you’ll act as Isabella, an employee of MagnetoCorp, who will issue a commercial
paper on its behalf. You’ll then switch roles to take the role of Balaji, an employee of DigiBank, who will buy this
commercial paper, hold it for a period of time, and then redeem it with MagnetoCorp for a small profit.

You’ll act as a developer, end user, and administrator, each in different organizations, performing the following steps
designed to help you understand what it’s like to collaborate as two different organizations working independently, but
according to mutually agreed rules in a Hyperledger Fabric network.

e Set up machine and download samples

* Create the network

* Examine the commercial paper smart contract

* Deploy the smart contract to the channel by approving the chaincode definition as MagnetoCorp and Digibank.
* Understand the structure of a MagnetoCorp application, including its dependencies

* Configure and use a wallet and identities

* Run a MagnetoCorp application to issue a commercial paper

* Understand how DigiBank uses the smart contract in their applications

* As Digibank, run applications that buy and redeem commercial paper

This tutorial has been tested on MacOS and Ubuntu, and should work on other Linux distributions. A Windows version
is under development.

224 Chapter 7. Tutorials

./tutorial/commercial_paper.html
../developapps/developing_applications.html

hyperledger-fabricdocs Documentation, Release master

7.3.1 Prerequisites
Before you start, you must install some prerequisite technology required by the tutorial. We’ve kept these to a mini-
mum so that you can get going quickly.
You must have the following technologies installed:
* Node The Node.js SDK README contains the up to date list of prerequisites.
You will find it helpful to install the following technologies:

* A source code editor, such as Visual Studio Code version 1.28, or higher. VS Code will help you develop and
test your application and smart contract. Install VS Code here.

Many excellent code editors are available including Atom, Sublime Text and Brackets.

You may find it helpful to install the following technologies as you become more experienced with application and
smart contract development. There’s no requirement to install these when you first run the tutorial:

* Node Version Manager. NVM helps you easily switch between different versions of node — it can be really
helpful if you’re working on multiple projects at the same time. Install NVM here.

7.3.2 Download samples

The commercial paper tutorial is one of the samples in the fabric-samples repository. Before you begin this
tutorial, ensure that you have followed the instructions to install the Fabric Prerequisites and Download the Samples,
Binaries and Docker Images. When you are finished, you will have cloned the fabric—-samples repository that
contains the tutorial scripts, smart contract, and application files.

https://github.com/hyperledger/fabric-samples

fabric-samples
GitHub
repository

1 download
1
Y

Local machine
(MacQs, Linux)

Download the fabric—samples GitHub repository to your local machine.

After downloading, feel free to examine the directory structure of fabric-samples:

$ cd fabric-samples

$ 1s

CODEOWNERS SECURITY.md first-network
CODE_OF_CONDUCT .md chaincode high-throughput
CONTRIBUTING.md chaincode—-docker—-devmode interest_rate_swaps
LICENSE ci off_chain_data
MAINTAINERS.md commercial-paper test—network

README . md fabcar

Notice the commercial-paper directory — that’s where our sample is located!

You’ve now completed the first stage of the tutorial! As you proceed, you’ll open multiple command windows for
different users and components. For example:

* To show peer, orderer and CA log output from your network.

7.3. Commercial paper tutorial 225

https://github.com/hyperledger/fabric-sdk-node#build-and-test
https://code.visualstudio.com/
https://code.visualstudio.com/Download
https://atom.io/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://github.com/creationix/nvm
https://github.com/creationix/nvm#installation
../prereqs.html
../install.html
../install.html

hyperledger-fabricdocs Documentation, Release master

* To approve the chaincode as an administrator from MagnetoCorp and as an administrator from DigiBank.

* To run applications on behalf of Isabella and Balaji, who will use the smart contract to trade commercial paper
with each other.

We’ll make it clear when you should run a command from particular command window; for example:

(isabella)$ 1s

indicates that you should run the 1 s command from Isabella’s window.

7.3.3 Create the network

This tutorial will deploy a smart contract using the Fabric test network. The test network consists of two peer or-
ganizations and one ordering organization. The two peer organizations operate one peer each, while the ordering
organization operates a single node Raft ordering service. We will also use the test network to create a single channel
named mychannel that both peer organizations will be members of.

Fabric test network

Orgl Ordering Organization Orgl
Orgl peer Ordering node Org2peer | 7
ledger ledger
databas database
Orgl CA Orgl CA Org2 CA

The Fabric test network is comprised of two peer organizations, Orgl and Org2, and one ordering organization. Each
component runs as a Docker container.

Each organization runs their own Certificate Authority. The two peers, the state databases, the ordering service node,
and each organization CA each run in their own Docker container. In production environments, organizations typically
use existing CAs that are shared with other systems; they’re not dedicated to the Fabric network.

The two organizations of the test network allow us to interact with a blockchain ledger as two organizations that operate
separate peers. In this tutorial, we will operate Orgl of the test network as DigiBank and Org2 as MagnetoCorp.

You can start the test network and create the channel with a script provided in the commercial paper directory. Change
to the commercial-paper directory in the fabric—samples:

’cd fabric-samples/commercial-paper

Then use the script to start the test network:

’./networkfstarter.sh

While the script is running, you will see logs of the test network being deployed. When the script is complete, you can
use the docker ps command to see the Fabric nodes running on your local machine:

226 Chapter 7. Tutorials

../ledger/ledger.html#world-state-database-options

hyperledger-fabricdocs Documentation, Release master

$ docker ps

CONTAINER ID IMAGE COMMAND .
—CREATED STATUS PORTS -
— NAMES

a86£50cals0n’ hyperledger/fabric—-peer:latest "peer node start" o

—About a minute ago Up About a minute 7051/tcp, 0.0.0.0:9051->9051/tcp
— peer0.org2.example.com

77d0fcaeeblb hyperledger/fabric-peer:latest "peer node start"
—About a minute ago Up About a minute 0.0.0.0:7051->7051/tcp

— peer0.orgl.example.com

7eb5f64bfe5f hyperledger/fabric-couchdb "tini -- /docker-ent..." |
—About a minute ago Up About a minute 4369/tcp, 9100/tcp, 0.0.0.0:5984->5984/tcp,,
— couchdbO

2438df719£f57 hyperledger/fabric—-couchdb "tini -- /docker-ent..." |
—About a minute ago Up About a minute 4369/tcp, 9100/tcp, 0.0.0.0:7984->5984/tcp,,
— couchdbl

03373d11l6cha hyperledger/fabric-orderer:latest "orderer"

—About a minute ago Up About a minute 0.0.0.0:7050->7050/tcp

— orderer.example.com

6b4d87£65909 hyperledger/fabric-ca:latest "sh -c 'fabric-ca-se..."
—About a minute ago Up About a minute 7054/tcp, 0.0.0.0:8054->8054/tcp

— ca_orgz

7p01£5454832 hyperledger/fabric-ca:latest "sh -c 'fabric-ca-se..."
—About a minute ago Up About a minute 7054/tcp, 0.0.0.0:9054->9054/tcp

— ca_orderer

87aef6062£23 hyperledger/fabric-ca:latest "sh -c 'fabric-ca-se..."
—About a minute ago Up About a minute 0.0.0.0:7054->7054/tcp

- ca_orgl

See if you can map these containers to the nodes of the test network (you may need to horizontally scroll to locate the
information):

e The Orgl peer, peer0.orgl.example.com, is running in container a86£50cal907

* The Org2 peer, peer0.o0rg2.example.com, is running in container 77d0fcaee6lb

* The CouchDB database for the Orgl peer, couchdb0, is running in container 7eb5f64bfe5f
* The CouchDB database for the Org2 peer, couchdbl, is running in container 2438d£719£57
e The Ordering node, orderer.example . com, is running in container 03373d116c5a

e The Orgl CA, ca_orgl, is running in container 8 7aef6062£23

e The Org2 CA, ca_org2, is running in container 6b4d87£65909

e The Ordering Org CA, ca_orderer, is running in container 7b01£5454832

These containers all form a Docker network called net_test. You can view the network with the docker
network command:

$ docker network inspect net_test

"Name": "net_test",

"Id": "f4¢c9712139311004b8f7accl14e9f90170c5dcfd8cdd06303¢c7b074624b44dcof",
"Created": "2020-04-28T22:45:38.5250162",

"Containers": {

(continues on next page)

7.3. Commercial paper tutorial 227

https://docs.docker.com/network/

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

"03373d116c5abf2ca%94£f6£00df98bb74£89037£511d6490ded4a217ed8b6fbcd0":

"Name": "orderer.example.com",

"EndpointID":
—"0eed871a2aaf9a5dbcf7896aa3c0£53cc61£5703417d36c56747033£d9£81972",
"MacAddress": "02:42:c0:a8:70:05",

"IPv4Address": "192.168.112.5/20",
"IPv6Address": ""

s

"2438df719£57a597de592cfc76db30013adfdcfalcec5b375£6b7259£67baff8":

"Name": "couchdbl",

"EndpointID":
—"52527fb450a7¢c80ea509cb571d18e2196a95¢c630d0f41913de8ed5abbd68993d",
"MacAddress": "02:42:c0:a8:70:06",

"IPv4Address": "192.168.112.6/20",
"IPv6Address": ""

}y

"6b4d87£65909afd335d7acfe6d79308d6e4b27441b25a829379516e4c7335b88":

"Name": "ca_org2",

"EndpointID":
—"1cc322a995880d76e1dd1£37ddf9¢c43£86997156124d4ecbb0ebad9£833218407",
"MacAddress": "02:42:c0:a8:70:04",

"IPv4Address": "192.168.112.4/20",
"IPv6Address": ""

}y

"77d0fcaee6lb8fff43d33331073ab9ce36561a903700b9ef3£77c663c8434e642":

"Name": "peer(O.orgl.example.com",

"EndpointID":
—"05d0d34569eee412e28313ba7ee06875a68408257dc47e64c0f4f5ef4a9dc491",
"MacAddress": "02:42:c0:a8:70:08",

"IPv4Address": "192.168.112.8/20",
"IPv6Address": ""

}I

"Tb01£5454832984£fcd9650£05b4affce97319£661710705e6381dfb76cd99fdb":

"Name": "ca_orderer",

"EndpointID":
—"057390288a424f49d6e9d6£788049b1lel8aa28bccd56d860b2be8ceb8173ef£74",
"MacAddress": "02:42:c0:a8:70:02",

"IPv4Address": "192.168.112.2/20",
"IPv6Address": ""

s

"7Teb5f64bfe5f20701aae8a6660815c4e3a81c3834b71f9e5%a62fb99%bedlafc7":

"Name": "couchdbO",

"EndpointID":
—"bfe740belb5ec9dab7baf3806964e6blf0b67032celb7ae26ac7844alb422ddc4",
"MacAddress": "02:42:c0:a8:70:07",

"IPv4Address": "192.168.112.7/20",
"IPv6Address": ""

}y

"87aef6062£2324889074cda80fec8fe014d844e10085827f380a9%9leeadccdd774":

"Name": "ca_orgl",

"EndpointID":
—"a740090d33ca%94dd7c6aafl4a79e1lcb351090549ee291c80195beccc901blbb7",
"MacAddress": "02:42:c0:a8:70:03",

"IPv4Address": "192.168.112.3/20",
"IPv6oAddress": ""

b

"a86£50cal9079£59552e8674932edd02£7£%9af93dedl14db3b4c404fd6blabedc":

{

{

(continues on next page)

228 Chapter 7. Tutor